Journal Home > Volume 16 , Issue 10

A novel peptidomimetic-liganded gold nanocluster (CDp-AuNC) is proposed for the synergistic suppression of tumor growth. Taking advantages of the multi-capabilities offered by the surface ligands, including iron chelation, glutathione peroxidases-1 (GPx-1) binding, and tumor cells recognition, CDp-AuNCs are able to function as the nanocarriers to deliver iron in a controlled manner for the ferroptosis therapy and as the inhibitors for GPx-1 to induce the apoptosis of tumor cells. The Fe2+@CDp-AuNC nanocomplexes are fabricated through a facile self-assembly method. The experimental data verify that the nanocomplexes are internalized specifically by tumor cells with high efficiency. The acidic microenvironment in endosomes triggers the collapse of the nanocomplexes and thereby releases Fe2+ to induce ferroptosis and CDp-AuNCs to inhibit the enzyme activity of GPx-1. Benefiting from the H2O2-depleted pathway inhibition and ferroptosis acceleration, the intracellular reactive oxygen species (ROS) level could be enhanced significantly. As a consequence, the apoptosis/ferroptosis of 4T1 cells as well as the tumor elimination in vivo are observed after treatment with the Fe2+@CDp-AuNC nanocomplexes at a relatively low dose. The facile iron loading method, simple construction procedure, and outstanding tumor suppression performance, provide CDp-AuNCs great application promise. More importantly, the strategy of peptidomimetic ligands design provides a transferable approach to building multifunctional nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Peptidomimetic-liganded gold nanoclusters for controlled iron delivery and synergistic suppression of tumor growth

Show Author's information Xiqi Ma1,§Duo Cai2,§Zhixiong Zhang1Qi Dai1Xinyu Li1Biao Yu1Baosheng Ge1Shihai Liu2( )Xiaojuan Wang1( )Fang Huang1( )
College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
Medical Animal Laboratory, Affiliated Hospital of Qingdao University, Qingdao 266500, China

§ Xiqi Ma and Duo Cai contributed equally to this work.

Abstract

A novel peptidomimetic-liganded gold nanocluster (CDp-AuNC) is proposed for the synergistic suppression of tumor growth. Taking advantages of the multi-capabilities offered by the surface ligands, including iron chelation, glutathione peroxidases-1 (GPx-1) binding, and tumor cells recognition, CDp-AuNCs are able to function as the nanocarriers to deliver iron in a controlled manner for the ferroptosis therapy and as the inhibitors for GPx-1 to induce the apoptosis of tumor cells. The Fe2+@CDp-AuNC nanocomplexes are fabricated through a facile self-assembly method. The experimental data verify that the nanocomplexes are internalized specifically by tumor cells with high efficiency. The acidic microenvironment in endosomes triggers the collapse of the nanocomplexes and thereby releases Fe2+ to induce ferroptosis and CDp-AuNCs to inhibit the enzyme activity of GPx-1. Benefiting from the H2O2-depleted pathway inhibition and ferroptosis acceleration, the intracellular reactive oxygen species (ROS) level could be enhanced significantly. As a consequence, the apoptosis/ferroptosis of 4T1 cells as well as the tumor elimination in vivo are observed after treatment with the Fe2+@CDp-AuNC nanocomplexes at a relatively low dose. The facile iron loading method, simple construction procedure, and outstanding tumor suppression performance, provide CDp-AuNCs great application promise. More importantly, the strategy of peptidomimetic ligands design provides a transferable approach to building multifunctional nanomaterials.

Keywords: self-assembly, drug delivery, gold nanocluster, ferroptosis, peptidomimetics

References(63)

[1]

Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.

[2]

Zhang, J.; Yang, J.; Zuo, T. T.; Ma, S. Y.; Xokrat, N.; Hu, Z. W.; Wang, Z. H.; Xu, R.; Wei, Y. W.; Shen, Q. Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy. Biomaterials 2021, 266, 120429.

[3]

Chen, X.; Kang, R.; Kroemer, G.; Tang, D. L. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296.

[4]

Li, J.; Cao, F.; Yin, H. L.; Huang, Z. J.; Lin, Z. T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88.

[5]

Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331.

[6]

Xin, H. H.; Huang, Y.; Tang, H. L.; Chen, Y.; Xia, H. G.; Zhang, F.; Li, B. W.; Ping, Y. Delivery of a system xc inhibitor by a redox-responsive levodopa prodrug nanoassembly for combination ferrotherapy. J. Mater. Chem. B 2021, 9, 7172–7181.

[7]

Song, R. D.; Li, T. L.; Ye, J. Y.; Sun, F.; Hou, B.; Saeed, M.; Gao, J.; Wang, Y. J.; Zhu, Q. W.; Xu, Z. A. et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. Adv. Mater. 2021, 33, e2101155.

[8]

Meng, X. Q.; Li, D. D.; Chen, L.; He, H.; Wang, Q.; Hong, C. Y.; He, J. Y.; Gao, X. F.; Yang, Y. L.; Jiang, B. et al. High-performance self-cascade pyrite nanozymes for apoptosis–ferroptosis synergistic tumor therapy. ACS Nano 2021, 15, 5735–5751.

[9]

Liu, X.; Sui, B.; Camargo, P. H. C.; Wang, J. L.; Sun, J. Tuning band gap of MnO2 nanoflowers by alkali metal doping for enhanced Ferroptosis/phototherapy synergism in cancer. Appl. Mater. Today 2021, 23, 101027.

[10]

Wan, X. Y.; Song, L. Q.; Pan, W.; Zhong, H.; Li, N.; Tang, B. Tumor-targeted cascade nanoreactor based on metal–organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano 2020, 14, 11017–11028.

[11]

Li, Y. P.; Hong, W. Y.; Zhang, H. N.; Zhang, T. T.; Chen, Z. Y.; Yuan, S. L.; Peng, P.; Xiao, M.; Xu, L. Photothermally triggered cytosolic drug delivery of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy. J. Controlled Release 2020, 317, 232–245.

[12]

Chen, L.; Lin, Z. J.; Liu, L. Z.; Zhang, X. M.; Shi, W.; Ge, D. T.; Sun, Y. N. Fe2+/Fe3+ ions chelated with ultrasmall polydopamine nanoparticles induce ferroptosis for cancer therapy. ACS Biomater. Sci. Eng. 2019, 5, 4861–4869.

[13]

Brigelius-Flohé, R.; Flohé, L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid. Redox Signal. 2020, 33, 498–516.

[14]

Okubo, T.; Saito, T.; Mitomi, H.; Takagi, T.; Torigoe, T.; Suehara, Y.; Kaneko, K.; Yao, T. K. S. p53 mutations may be involved in malignant transformation of giant cell tumor of bone through interaction with GPX1. Virchows Arch. 2013, 463, 67–77.

[15]

Dokic, I.; Hartmann, C.; Herold-Mende, C.; Régnier-Vigouroux, A. Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia 2012, 60, 1785–1800.

[16]

Lubos, E.; Loscalzo, J.; Handy, D. E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997.

[17]

Handy, D. E.; Lubos, E.; Yang, Y.; Galbraith, J. D.; Kelly, N.; Zhang, Y. Y.; Leopold, J. A.; Loscalzo, J. Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J. Biol. Chem. 2009, 284, 11913–11921.

[18]

Behnisch-Cornwell, S.; Wolff, L.; Bednarski, P. J. The effect of glutathione peroxidase-1 knockout on anticancer drug sensitivities and reactive oxygen species in haploid HAP-1 cells. Antioxidants (Basel) 2020, 9, 1300.

[19]

Behnisch-Cornwell, S.; Bandaru, S. S. M.; Napierkowski, M.; Wolff, L.; Zubair, M.; Urbainsky, C.; Lillig, C.; Schulzke, C.; Bednarski, P. J. Pentathiepins: A novel class of glutathione peroxidase 1 inhibitors that induce oxidative stress, loss of mitochondrial membrane potential and apoptosis in human cancer cells. ChemMedChem 2020, 15, 1515–1528.

[20]

Baker, M. A.; Tappel, A. L. Effects of ligands on gold inhibition of selenium glutathione peroxidase. Biochem. Pharmacol. 1986, 35, 2417–2422.

[21]

Chaudiere, J.; L Tappel, A. Interaction of gold(I) with the active site of selenium-glutathione peroxidase. J. Inorg. Biochem. 1984, 20, 313–325.

[22]

Liu, M. Q.; Gao, L.; Zhao, L. N.; He, J.; Yuan, Q.; Zhang, P.; Zhao, Y. W.; Gao, X. Y. Peptide-Au clusters induced tumor cells apoptosis via targeting glutathione peroxidase-1: The molecular dynamics assisted experimental studies. Sci. Rep. 2017, 7, 131.

[23]

Zhu, J. Y.; He, K.; Dai, Z. Y.; Gong, L. S.; Zhou, T. Y.; Liang, H. R.; Liu, J. B. Self-assembly of luminescent gold nanoparticles with sensitive pH-stimulated structure transformation and emission response toward lysosome escape and intracellular imaging. Anal. Chem. 2019, 91, 8237–8243.

[24]

Xue, C.; Hu, S. Y.; Gao, Z. H.; Wang, L.; Luo, M. X.; Yu, X.; Li, B. F.; Shen, Z. F.; Wu, Z. S. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted delivery of siRNAs. Nat. Commun. 2021, 12, 2928.

[25]

Xia, J. H.; Wang, X. Y.; Zhu, S. X.; Liu, L.; Li, L. D. Gold nanocluster-decorated nanocomposites with enhanced emission and reactive oxygen species generation. ACS Appl. Mater. Interfaces 2019, 11, 7369–7378.

[26]

Liang, G. H.; Jin, X. D.; Zhang, S. X.; Xing, D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials 2017, 144, 95–104.

[27]

Feng, N.; Wang, Z.; Sun, D.; Sun, P. P.; Xin, X.; Cheng, X. H.; Li, H. G. Circularly polarized phosphorescence from cocrystallization of atomic precise silver nanoclusters with tartaric acid. Adv. Opt. Mater. 2022, 10, 2102319.

[28]

Shen, J. L.; Xiao, Q. W.; Sun, P. P.; Feng, J.; Xin, X.; Yu, Y.; Qi, W. Self-assembled chiral phosphorescent microflowers from Au nanoclusters with dual-mode pH sensing and information encryption. ACS Nano 2021, 15, 4947–4955.

[29]

Bi, Y. T.; Wang, Z.; Liu, T.; Sun, D.; Godbert, N.; Li, H. G.; Hao, J. C.; Xin, X. Supramolecular chirality from hierarchical self-assembly of atomically precise silver nanoclusters induced by secondary metal coordination. ACS Nano 2021, 15, 15910–15919.

[30]

Xie, Z. C.; Sun, P. P.; Wang, Z.; Li, H. G.; Yu, L. Y.; Sun, D.; Chen, M. J.; Bi, Y. T.; Xin, X.; Hao, J. C. Metal–organic gels from silver nanoclusters with aggregation-induced emission and fluorescence-to-phosphorescence switching. Angew. Chem., Int. Ed. 2020, 59, 9922–9927.

[31]

Deng, H. H.; Deng, Q.; Li, K. L.; Zhuang, Q. Q.; Zhuang, Y. B.; Peng, H. P.; Xia, X. H.; Chen, W. Fluorescent gold nanocluster-based sensor for detection of alkaline phosphatase in human osteosarcoma cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc 2020, 229, 117875.

[32]

Liu, X. H.; Zhang, Q. W.; Knoll, W.; Liedberg, B.; Wang, Y. Rational design of functional peptide-gold hybrid nanomaterials for molecular interactions. Adv. Mater. 2020, 32, 2000866.

[33]

Yuan, Q.; Wang, Y. L.; Zhao, L. N.; Liu, R.; Gao, F. P.; Gao, L.; Gao, X. Y. Peptide protected gold clusters: Chemical synthesis and biomedical applications. Nanoscale 2016, 8, 12095–12104.

[34]

Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core–shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

[35]

You, J. G.; Tseng, W. L. Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. Anal. Chim. Acta 2019, 1078, 101–111.

[36]

An, D. Y.; Su, J. G.; Weber, J. K.; Gao, X. Y.; Zhou, R. H.; Li, J. Y. A peptide-coated gold nanocluster exhibits unique behavior in protein activity inhibition. J. Am. Chem. Soc. 2015, 137, 8412–8418.

[37]

Zhuang, J.; Kuo, C. H.; Chou, L. Y.; Liu, D. Y.; Weerapana, E.; Tsung, C. K. Optimized metal–organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation. ACS Nano 2014, 8, 2812–2819.

[38]

Li, Q.; Yuan, Q.; Zhao, M. H.; Yao, Y. W.; Gao, L.; Liu, R.; Wang, Y. L.; Gong, Y.; Gao, F. P.; Gao, X. Y. Au nanoclusters suppress chronic lymphocytic leukaemia cells by inhibiting thioredoxin reductase 1 to induce intracellular oxidative stress and apoptosis. Sci. Bull. 2017, 62, 537–545.

[39]

Zhang, P.; Zhai, J.; Gao, X. Y.; Zhao, H. K.; Su, W. Y.; Zhao, L. N. Targeted peptide-Au cluster binds to epidermal growth factor receptor (EGFR) in both active and inactive states: A clue for cancer inhibition through dual pathways. Sci. Bull. 2018, 63, 349–355.

[40]

Wang, Y. L.; Cui, Y. Y.; Zhao, Y. L.; Liu, R.; Sun, Z. P.; Li, W.; Gao, X. Y. Bifunctional peptides that precisely biomineralize Au clusters and specifically stain cell nuclei. Chem. Commun. 2012, 48, 871–873.

[41]

Wu, M. H.; Zhang, Y. Y.; Zhang, Y.; Wu, M. J.; Wu, M. L.; Wu, H. L.; Cao, L. Y.; Li, L.; Li, X.; Zhang, X. N. Tumor angiogenesis targeting and imaging using gold nanoparticle probe with directly conjugated cyclic NGR. RSC Adv. 2018, 8, 1706–1716.

[42]

Ma, X. C.; Wang, X. B.; Zhou, M.; Fei, H. A mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv. Healthcare Mater. 2013, 2, 1638–1643.

[43]

Li, Z. M.; Huang, P.; Zhang, X. J.; Lin, J.; Yang, S.; Liu, B.; Gao, F.; Xi, P.; Ren, Q. S.; Cui, D. X. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol. Pharmaceutics 2010, 7, 94–104.

[44]

Xu, W. C.; Luo, T.; Li, P.; Zhou, C. Q.; Cui, D. X.; Pang, B.; Ren, Q. S.; Fu, S. RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating αvβ3 expression. Int. J. Nanomedicine 2012, 7, 915–924.

[45]

Xie, Y. Z. Y.; Xianyu, Y. L.; Wang, N. X.; Yan, Z. Y.; Liu, Y.; Zhu, K.; Hatzakis, N. S.; Jiang, X. Y. Functionalized gold nanoclusters identify highly reactive oxygen species in living organisms. Adv. Funct. Mater. 2018, 28, 1702026.

[46]

Wang, X. J.; He, H.; Wang, Y. N.; Wang, J. Y.; Sun, X.; Xu, H.; Nau, W. M.; Zhang, X. D.; Huang, F. Active tumor-targeting luminescent gold clusters with efficient urinary excretion. Chem. Commun. 2016, 52, 9232–9235.

[47]

Wang, X. J.; Wang, Y. N.; He, H.; Ma, X. Q.; Chen, Q.; Zhang, S.; Ge, B. S.; Wang, S. J.; Nau, W. M.; Huang, F. Deep-red fluorescent gold nanoclusters for nucleoli staining: Real-time monitoring of the nucleolar dynamics in reverse transformation of malignant cells. ACS Appl. Mater. Interfaces 2017, 9, 17799–17806.

[48]

Ma, X. Q.; Wang, X. J.; Liu, C.; Ge, B. S.; He, H.; Dai, Q.; Zhang, Z. X.; Yu, J. Y.; Nau, W. M.; Huang, F. Self-assembled theranostic microcarrier targeting tumor cells with high metastatic potential. Mater. Des. 2021, 212, 110196.

[49]

Ma, X. Q.; Wang, X. J.; Chen, Q.; He, H.; Sun, Y. X.; Liu, H.; Wang, Y. N.; Qu, J. B.; Huang, F. Glycosaminoglycan/gold nanocluster hybrid nanoparticles as a new sensing platform: Metastatic potential assessment of cancer cells. Carbohydr. Polym. 2020, 230, 115654.

[50]

Wang, Y. N.; Wang, X. J.; Ma, X. Q.; Chen, Q.; He, H.; Nau, W. M.; Huang, F. Coassembly of gold nanoclusters with nucleic acids: Sensing, bioimaging, and gene transfection. Part. Part. Syst. Charact. 2019, 36, 1900281.

[51]

Lenci, E.; Trabocchi, A. Peptidomimetic toolbox for drug discovery. Chem. Soc. Rev. 2020, 49, 3262–3277.

[52]

Hou, X. Y.; Shou, C. T.; He, M. Y.; Xu, J. J.; Cheng, Y.; Yuan, Z. T.; Lan, M. B.; Zhao, Y. Z.; Yang, Y.; Chen, X. J. et al. A combination of lighton gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy. Acta Pharm. Sin. B 2020, 10, 1741–1753.

[53]

Song, X. R.; Zhu, W.; Ge, X. G.; Li, R. F.; Li, S. H.; Chen, X.; Song, J. B.; Xie, J. P.; Chen, X. Y.; Yang, H. H. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem., Int. Ed. 2021, 60, 1306–1312.

[54]

Han, R. C.; Zhao, M.; Wang, Z. W.; Liu, H. L.; Zhu, S. C.; Huang, L.; Wang, Y.; Wang, L. J.; Hong, Y. K.; Sha, Y. L. et al. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 2020, 14, 9532–9544.

[55]

Ranji-Burachaloo, H.; Karimi, F.; Xie, K.; Fu, Q.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. MOF-mediated destruction of cancer using the cell’s own hydrogen peroxide. ACS Appl. Mater. Interfaces 2017, 9, 33599–33608.

[56]

Fu, J. K.; Li, T.; Yang, Y. Z.; Jiang, L. P.; Wang, W. H.; Fu, L. J.; Zhu, Y. C.; Hao, Y. Q. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials 2021, 268, 120537.

[57]

Dong, Z. L.; Feng, L. Z.; Chao, Y.; Hao, Y.; Chen, M. C.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2019, 19, 805–815.

[58]

Liu, T.; Liu, W. L.; Zhang, M. K.; Yu, W. Y.; Gao, F.; Li, C. X.; Wang, S. B.; Feng, J.; Zhang, X. Z. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano 2018, 12, 12181–12192.

[59]

Chen, X. R.; Leng, Y. K.; Hao, L. W.; Duan, H.; Yuan, J.; Zhang, W. J.; Huang, X. L.; Xiong, Y. H. Self-assembled colloidal gold superparticles to enhance the sensitivity of lateral flow immunoassays with sandwich format. Theranostics 2020, 10, 3737–3748.

[60]

Bratek-Skicki, A. Towards a new class of stimuli-responsive polymer-based materials—Recent advances and challenges. Appl. Surf. Sci. Adv. 2021, 4, 100068.

[61]

Rao, N. V.; Ko, H.; Lee, J.; Park, J. H. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front. Bioeng. Biotechnol. 2018, 6, 110.

[62]

Xue, C. C.; Li, M. H.; Zhao, Y.; Zhou, J. L.; Hu, Y.; Cai, K. Y.; Zhao, Y.; Yu, S. H.; Luo, Z. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv. 2020, 6, eaax1346.

[63]

Huang, G.; Chen, H. B.; Dong, Y.; Luo, X. Q.; Yu, H. J.; Moore, Z.; Bey, E. A.; Boothman, D. A.; Gao, J. M. Superparamagnetic iron oxide nanoparticles: Amplifying ROS stress to improve anticancer drug efficacy. Theranostics 2013, 3, 116–126.

File
12274_2022_5103_MOESM1_ESM.pdf (1,010 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 July 2022
Revised: 24 September 2022
Accepted: 26 September 2022
Published: 30 November 2022
Issue date: October 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 22177133, 42061134020, and 32070380), the Natural Science Foundation of Shandong Province (Nos. ZR2019ZD17 and ZR2021MH022), the Qingdao Municipal People’s Livelihood Science and Technology Project (No. 17-3-3-76-nsh), and the Graduate Innovative Engineering Funding project of UPC (No. YCX2020041).

Return