Journal Home > Volume 16 , Issue 4

The activation of the stimulating factor of the interferon gene (STING) pathway can enhance the immune response within the tumor. Cyclic diguanylate monophosphate (c-di-GMP) is a negatively charged, hydrophilic STING agonist, however, its effectiveness is limited due to the poor membrane permeability and low bioavailability. Herein, we introduced KL-7 peptide derived from Aβ amyloid fibrils that can self-assemble to form nanotubes to load and deliver c-di-GMP, which significantly enhanced c-di-GMP’s effectiveness and then exhibited a robust “in situ immunity” to kill melanoma cells. KL-7 peptide nanotube, also called PNT, was loaded with negatively charged c-di-GMP via electrostatic interaction, which prepared a nanocomposite named c-di-GMP-PNT. Treatment of RAW 264.7 cells (leukemia cells in mouse macrophage) with c-di-GMP-PNT markedly stimulated the secretion of IL-6 and INF-β along with phospho-STING (Ser365) protein expression, indicating the activation of the STING pathway. In the unilateral flank B16-F10 (murine melanoma cells) tumor-bearing mouse model, compared to PNT and c-di-GMP, c-di-GMP-PNT can promote the expression of INF-β, TNF-α, IL-6, and IL-1β. At the same time, up-regulated CD4 and CD8 active T cells kill tumors and enhance the immune response in tumor tissues, resulting in significant inhibition of tumor growth in tumor-bearing mice. More importantly, in a bilateral flank B16-F10 tumor model, both primary and distant tumor growth can also be significantly inhibited by c-di-GMP-PNT. Moreover, c-di-GMP-PNT demonstrated no obvious biological toxicity on the main organs (heart, liver, spleen, lung, and kidney) and biochemical indexes of mice. In summary, our study provides a strategy to overcome the barriers of free c-di-GMP in the tumor microenvironment and c-di-GMP-PNT may be an attractive nanomaterial for anti-tumor immunity.

File
12274_2022_5102_MOESM1_ESM.pdf (856.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2022
Revised: 25 September 2022
Accepted: 26 September 2022
Published: 09 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 21877036 and 32201044), the Key Project of Developmental Biology and Breeding from Hunan Province (No. 2022XKQ0205), the Hunan Natural Science Foundation (No. 2021JJ40335), and the Science and Technology Planning Project of Hunan Province (No. 2018TP1017).

Return