Journal Home > Volume 16 , Issue 4

Amorphous nanomaterials with long-range disordered structures could possess distinct properties and promising applications, especially in catalysis, as compared with their conventional crystalline counterparts. It is imperative to achieve the controlled preparation of amorphous noble metal-based nanomaterials for the exploration of their phase-dependent applications. Here, we report a facile wet-chemical reduction strategy to synthesize various amorphous multimetallic Pd-based nanomaterials, including PdRu, PdRh, and PdRuRh. The phase-dependent catalytic performances of distinct Pd-based nanomaterials towards diverse catalytic applications have been demonstrated. Specifically, the usage of PdRu nanocatalysts with amorphous and crystalline face-centered cubic (fcc) phases can efficiently switch the ring-opening route of styrene oxide to obtain different products with high selectivity through alcoholysis reaction and hydrogenation reaction, respectively. Moreover, when used as an electrocatalyst for hydrogen evolution reaction (HER), the synthesized amorphous PdRh nanocatalyst exhibits low overpotential and high turnover frequency values, outperforming its crystalline fcc counterpart and most of the reported Pd-based HER electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of amorphous Pd-based nanocatalysts for efficient alcoholysis of styrene oxide and electrochemical hydrogen evolution

Show Author's information Yiyao Ge1,§Jingjie Ge4,5,§Biao Huang1,2,§Xixi Wang1,§Guigao Liu1Xiang-Huan Shan6Lu Ma7Bo Chen1Guanghua Liu8Songmo Du8An Zhang1Hongfei Cheng5Qingbo Wa1Shiyao Lu1Lujiang Li1Qinbai Yun1Kuo Yuan1Qinxin Luo1Zhichuan J. Xu5Yonghua Du7Hua Zhang1,2,3( )
Department of Chemistry, City University of Hong Kong, Hong Kong, China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
Department of Chemical and Biological Engineering, HKUST Jockey Club Institute for Advanced Study & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

§ Yiyao Ge, Jingjie Ge, Biao Huang, and Xixi Wang contributed equally to this work.

Abstract

Amorphous nanomaterials with long-range disordered structures could possess distinct properties and promising applications, especially in catalysis, as compared with their conventional crystalline counterparts. It is imperative to achieve the controlled preparation of amorphous noble metal-based nanomaterials for the exploration of their phase-dependent applications. Here, we report a facile wet-chemical reduction strategy to synthesize various amorphous multimetallic Pd-based nanomaterials, including PdRu, PdRh, and PdRuRh. The phase-dependent catalytic performances of distinct Pd-based nanomaterials towards diverse catalytic applications have been demonstrated. Specifically, the usage of PdRu nanocatalysts with amorphous and crystalline face-centered cubic (fcc) phases can efficiently switch the ring-opening route of styrene oxide to obtain different products with high selectivity through alcoholysis reaction and hydrogenation reaction, respectively. Moreover, when used as an electrocatalyst for hydrogen evolution reaction (HER), the synthesized amorphous PdRh nanocatalyst exhibits low overpotential and high turnover frequency values, outperforming its crystalline fcc counterpart and most of the reported Pd-based HER electrocatalysts.

Keywords: phase engineering of nanomaterials, amorphous nanomaterials, Pd-based nanocatalysts, ring-opening reaction of styrene oxide, electrocatalytic hydrogen evolution

References(41)

[1]

Shi, Y. F.; Lyu, Z.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

[2]

Yang, T. H.; Ahn, J.; Shi, S.; Wang, P.; Gao, R. Q.; Qin, D. Noble-metal nanoframes and their catalytic applications. Chem. Rev. 2021, 121, 796–833.

[3]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

[4]

Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

[5]

Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

[6]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[7]

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

[8]

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

[9]

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

[10]

Liu, J. W.; Huang, J. T.; Niu, W. X.; Tan, C. L.; Zhang, H. Unconventional-phase crystalline materials constructed from multiscale building blocks. Chem. Rev. 2021, 121, 5830–5888.

[11]

Zhao, M.; Xia, Y. N. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat. Rev. Mater. 2020, 5, 440–459.

[12]

Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.

[13]

Zhang, X.; Luo, Z. M.; Yu, P.; Cai, Y. Q.; Du, Y. H.; Wu, D. X.; Gao, S.; Tan, C. L.; Li, Z.; Ren, M. Q. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468.

[14]
Liang, J. Z.; Ge, Y. Y.; He, Z.; Yun, Q. B.; Liu, G. G.; Lu, S. Y.; Zhai, L.; Huang, B.; Zhang, H. Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials. Nano Res., in press, https://doi.org/10.1007/s12274-021-4007-6.
[15]

Zhao, H. W.; Li, F. S.; Wang, S. X.; Guo, L. Wet chemical synthesis of amorphous nanomaterials with well-defined morphologies. Acc. Mater. Res. 2021, 2, 804–815.

[16]

Ge, J. J.; Yin, P. Q.; Chen, Y.; Cheng, H. F.; Liu, J. W.; Chen, B.; Tan, C. L.; Yin, P. F.; Zheng, H. X.; Li, Q. Q. et al. Ultrathin amorphous/crystalline heterophase Rh and Rh alloy nanosheets as tandem catalysts for direct indole synthesis. Adv. Mater. 2021, 33, 2006711.

[17]

Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

[18]

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

[19]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[20]

Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

[21]

Zhou, M.; Li, C.; Fang, J. Y. Noble-metal based random alloy and intermetallic nanocrystals: Syntheses and applications. Chem. Rev. 2021, 121, 736–795.

[22]

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

[23]

Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.

[24]

Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

[25]

Duval, M.; Deboos, V.; Hallonet, A.; Sagorin, G.; Denicourt-Nowicki, A.; Roucoux, A. Selective palladium nanoparticles-catalyzed hydrogenolysis of industrially targeted epoxides in water. J. Catal. 2021, 396, 261–268.

[26]

Zhou, X. C.; Ma, Y. B.; Ge, Y. Y.; Zhu, S. Q.; Cui, Y.; Chen, B.; Liao, L. W.; Yun, Q. B.; He, Z.; Long, H. W. et al. Preparation of Au@Pd core–shell nanorods with fcc-2H-fcc heterophase for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 2022, 144, 547–555.

[27]

Ge, Y. Y.; Wang, X. X.; Huang, B.; Huang, Z. Q.; Chen, B.; Ling, C. Y.; Liu, J. W.; Liu, G. H.; Zhang, J.; Wang, G. et al. Seeded synthesis of unconventional 2H-phase Pd alloy nanomaterials for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 17292–17299.

[28]

Cheng, H. F.; Yang, N. L.; Liu, G. G.; Ge, Y. Y.; Huang, J. T.; Yun, Q. B.; Du, Y. H.; Sun, C. J.; Chen, B.; Liu, J. W. et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2020, 32, 1902964.

[29]

Corthey, G.; Rubert, A. A.; Picone, A. L.; Casillas, G.; Giovanetti, L. J.; Ramallo-López, J. M.; Zelaya, E.; Benitez, G. A.; Requejo, F. G.; José-Yacamán, M. et al. New insights into the chemistry of thiolate-protected palladium nanoparticles. J. Phys. Chem. C 2012, 116, 9830–9837.

[30]

Lu, W.; Wang, B.; Wang, K. D.; Wang, X. P.; Hou, J. G. Synthesis and characterization of crystalline and amorphous palladium nanoparticles. Langmuir 2003, 19, 5887–5891.

[31]

Corthey, G.; Olmos-Asar, J. A.; Casillas, G.; Mariscal, M. M.; Mejía-Rosales, S.; Azcárate, J. C.; Larios, E.; José-Yacamán, M.; Salvarezza, R. C.; Fonticelli, M. H. Influence of capping on the atomistic arrangement in palladium nanoparticles at room temperature. J. Phys. Chem. C 2014, 118, 24641–24647.

[32]

Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M. M.; Mangeney, C.; Villain, F.; Fiévet, F. Acetate- and thiol-capped monodisperse ruthenium nanoparticles:  XPS, XAS, and HRTEM studies. Langmuir 2005, 21, 6788–6796.

[33]

Yao, C. B.; Dahmen, T.; Gansäuer, A.; Norton, J. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science 2019, 364, 764–767.

[34]

Liu, W. P.; Li, W.; Spannenberg, A.; Junge, K.; Beller, M. Iron-catalysed regioselective hydrogenation of terminal epoxides to alcohols under mild conditions. Nat. Catal. 2019, 2, 523–528.

[35]

Zhou, Y. X.; Chen, Y. Z.; Hu, Y. L.; Huang, G.; Yu, S. H.; Jiang, H. L. MIL-101-SO3H: A highly efficient Bronsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chem. -Eur. J. 2014, 20, 14976–14980.

[36]

Telkar, M. M.; Rode, C. V.; Chaudhari, R. V.; Joshi, S. S.; Nalawade, A. M. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1,4-diol and styrene oxide. Appl. Catal. A:Gen. 2004, 273, 11–19.

[37]

Bruno, S. M.; Gonçalves, I. S.; Pillinger, M.; Romão, C. C.; Valente, A. A. Acid-catalyzed epoxide alcoholysis in the presence of indenyl molybdenum carbonyl complexes. J. Organomet. Chem. 2018, 855, 12–17.

[38]

Li, L. G.; Bu, L. Z.; Huang, B. L.; Wang, P. T.; Shen, C. Q.; Bai, S. X.; Chan, T. S.; Shao, Q.; Hu, Z. W.; Huang, X. Q. Compensating electronic effect enables fast site-to-site electron transfer over ultrathin RuMn nanosheet branches toward highly electroactive and stable water splitting. Adv. Mater. 2021, 33, 2105308.

[39]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[40]

Mao, Q. Q.; Wang, P.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. PdRh bimetallene for energy-saving hydrogen production via methanol electroreforming. Appl. Mater. Today 2022, 26, 101400.

[41]

Łosiewicz, B.; Lasia, A. Study of the hydrogen absorption/diffusion in Pd80Rh20 alloy in acidic solution. J. Electroanal. Chem. 2018, 822, 153–162.

File
12274_2022_5101_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 September 2022
Accepted: 23 September 2022
Published: 13 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

H. Z. thanks the support from ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), the Research Grants Council of Hong Kong (No. 11301721), the Start-Up Grant (No. 9380100) and the grants (No. 1886921) from the City University of Hong Kong. This research used 7-BM of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract (No. DE-SC0012704).

Return