Journal Home > Volume 16 , Issue 2

Designing highly reliable and practical microwave absorbers is one of the most important research directions in the microwave absorbing field. Many absorbents suffer from concentration-sensitivity and environmental-sensitivity dilemmas in practical applications. Here, sea urchin-like aggregates of MnO2 nanotubes were synthesized by a simple hydrothermal method, which exhibit an outstanding impedance matching characteristic. The composites based on sea urchin-like aggregates of MnO2 nanotubes show excellent microwave absorption performance in a wide concentration domain from 20 wt.% to 70 wt.%, corresponding to electrical conductivities from 1.86 × 10−7 to 1.85 × 10−5 S/m. Such a wide concentration range of absorbent for excellent microwave absorption is mainly attributed to the beneficial impedance matching properties of sea urchin-like aggregates of hollow nanotubes. A competitive absorption bandwidth of 3.36 GHz is achieved at 1 mm thickness, which can be broadened to 13.4 GHz by structural design. This work shows a new scheme for designing reliable and practical microwave absorbers benefit from the wide absorbent concentration domain.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain

Show Author's information Zhi-Ling Hou1( )Kunrong Du1Yiqin Zhang1Song Bi2( )Junying Zhang1( )
College of Mathematics and Physics & Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
501 Department, Xi’an Research Institute of High-Tech, Xi’an 710025, China

Abstract

Designing highly reliable and practical microwave absorbers is one of the most important research directions in the microwave absorbing field. Many absorbents suffer from concentration-sensitivity and environmental-sensitivity dilemmas in practical applications. Here, sea urchin-like aggregates of MnO2 nanotubes were synthesized by a simple hydrothermal method, which exhibit an outstanding impedance matching characteristic. The composites based on sea urchin-like aggregates of MnO2 nanotubes show excellent microwave absorption performance in a wide concentration domain from 20 wt.% to 70 wt.%, corresponding to electrical conductivities from 1.86 × 10−7 to 1.85 × 10−5 S/m. Such a wide concentration range of absorbent for excellent microwave absorption is mainly attributed to the beneficial impedance matching properties of sea urchin-like aggregates of hollow nanotubes. A competitive absorption bandwidth of 3.36 GHz is achieved at 1 mm thickness, which can be broadened to 13.4 GHz by structural design. This work shows a new scheme for designing reliable and practical microwave absorbers benefit from the wide absorbent concentration domain.

Keywords: broadband microwave absorption, MnO2 nanotubes, sea urchin-like aggregates, wide filling range

References(47)

[1]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

[2]

Huang, M. Q.; Wang, L.; You, W. B.; Che, R. C. Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 2021, 17, 2101416.

[3]

Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

[4]

Li, X. H.; You, W. B.; Zhang, R. X.; Fang, J. F.; Zeng, Q. W.; Li, X.; Xu, C. Y.; Wang, M.; Che, R. C. Synthesis of nonspherical hollow architecture with magnetic Fe core and Ni decorated tadpole-like shell as ultrabroad bandwidth microwave absorbers. Small 2021, 17, 2103351.

[5]

Zhao, B.; Li, Y.; Zeng, Q. W.; Wang, L.; Ding, J. J.; Zhang, R.; Che, R. C. Galvanic replacement reaction involving core–shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16, 2003502.

[6]

Yan, J.; Huang, Y.; Yan, Y. H.; Ding, L.; Liu, P. B. High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces 2019, 11, 40781–40792.

[7]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[8]

Zadeh, A. K.; Karlsson, A. Capacitive circuit method for fast and efficient design of wideband radar absorbers. IEEE Trans. Antennas Propag. 2009, 57, 2307–2314.

[9]

Açıkalın, E.; Atıcı, O.; Sayıntı, A.; Çoban, K.; Erkalfa, H. Preparation of dendritic waterborne polyurethane-urea/Ni-Zn ferrite composite coatings and investigation of their microwave absorption properties. Prog. Org. Coat. 2013, 76, 972–978.

[10]

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

[11]

Chang, H. C.; Qin, J. L.; Xiao, P. S.; Yang, Y.; Zhang, T. F.; Ma, Y. F.; Huang, Y.; Chen, Y. S. Highly reversible and recyclable absorption under both hydrophobic and hydrophilic conditions using a reduced bulk graphene oxide material. Adv. Mater. 2016, 28, 3504–3509.

[12]

Duan, Y. P.; Pang, H. F.; Wen, X.; Zhang, X. F.; Wang, T. M. Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J. Mater. Sci. Technol. 2021, 77, 209–216.

[13]

Wang, X. X.; Dong, L. F.; Zhang, B. Q.; Yu, M. X.; Liu, J. Q. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties. Nanotechnology 2016, 27, 125602.

[14]

Zhang, X. F.; Liu, X. D.; Dong, S. L.; Yang, J. Q.; Liu, Y. Template-free synthesized 3D macroporous MXene with superior performance for supercapacitors. Appl. Mater. Today 2019, 16, 315–321.

[15]

Luo, J. H.; Zhang, K.; Cheng, M. L.; Gu, M. M.; Sun, X. K. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 2020, 380, 122625.

[16]

Gu, W. H.; Cui, X. Q.; Zheng, J.; Yu, J. W.; Zhao, Y.; Ji, G. B. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 2021, 67, 265–272.

[17]

Guo, R.; Fan, Y. C.; Wang, L. J.; Jiang, W. Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber. Carbon 2020, 169, 214–224.

[18]

Wang, Y.; Wu, X. M.; Zhang, W. Z.; Luo, C. Y.; Li, J. H.; Wang, Q.; Wang, Q. G. Synthesis of polyaniline nanorods and Fe3O4 microspheres on graphene nanosheets and enhanced microwave absorption performances. Mater. Chem. Phys. 2018, 209, 23–30.

[19]

Açıkalın, E.; Çoban, K.; Sayıntı, A. Nanosized hybrid electromagnetic wave absorbing coatings. Prog. Org. Coat. 2016, 98, 2–5.

[20]

Liu, P. B.; Zhang, Y. Q.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. X. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298.

[21]

Xue, J. M.; Yin, X. W.; Cheng, L. F. Induced crystallization behavior and EMW absorption properties of CVI SiCN ceramics modified with carbon nanowires. Chem. Eng. J. 2019, 378, 122213.

[22]

Wang, G. S.; Deng, Y.; Xiang, Y.; Guo, L. Fabrication of radial ZnO nanowire clusters and radial ZnO/PVDF composites with enhanced dielectric properties. Adv. Funct. Mater. 2008, 18, 2584–2592.

[23]

Wen, M.; Sun, X. J.; Su, L.; Shen, J. B.; Li, J.; Guo, S. Y. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 2012, 53, 1602–1610.

[24]

Lu, M. M.; Wang, X. X.; Cao, W. Q.; Yuan, J.; Cao, M. S. Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 2016, 27, 065702.

[25]

Liang, X. H.; Quan, B.; Chen, J. B.; Gu, W. H.; Zhang, B. S.; Ji, G. B. Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications. ACS Appl. Nano Mater. 2018, 1, 5712–5721.

[26]

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

[27]

Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Res. 2022, 15, 6743–6750.

[28]

Song, W. L.; Cao, M. S.; Hou, Z. L.; Fang, X. Y.; Shi, X. L.; Yuan, J. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 2009, 94, 233110.

[29]

Wei, H. J.; Yin, X. W.; Li, X.; Li, M. H.; Dang, X. L.; Zhang, L. T.; Cheng, L. F. Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon 2019, 147, 276–283.

[30]

Li, Y. X.; Wang, J. Y.; Liu, R. G.; Zhao, X. N.; Wang, X. J.; Zhang, X. F.; Qin, G. W. Dependence of gigahertz microwave absorption on the mass fraction of Co@C nanocapsules in composite. J. Alloys Compd. 2017, 724, 1023–1029.

[31]

Zheng, H.; Yao, W. H.; Sun, H. J.; Tong, G. X. Highly enhanced microwave absorption properties of CoFeBSiNb metallic glasses through corrosion. J. Magn. Magn. Mater. 2018, 468, 109–114.

[32]

Huang, W. H.; Zhang, X. X.; Zhao, Y. N.; Zhang, J.; Liu, P. B. Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption. Carbon 2020, 167, 19–30.

[33]

Qu, B.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2016, 8, 3730–3735.

[34]

Wang, X. H.; Ni, S. B.; Zhou, G.; Sun, X. L.; Yang, F.; Wang, J. M.; He, D. Y. Facile synthesis of ultra-long α-MnO2 nanowires and their microwave absorption properties. Mater. Lett. 2010, 64, 1496–1498.

[35]

Su, T. T.; Zhao, B.; Han, F. Q.; Fan, B. B.; Zhang, R. The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties. J. Mater. Sci. Mater. Electron. 2019, 30, 475–484.

[36]

Zhang, F.; Du, H.; Shang, S. Y.; Qaim, M.; Bao, S.; Su, T. T.; Zhang, R.; Lu, H. X.; Wang, H. L.; Xu, H. L. et al. Constructing γ-MnO2 hollow spheres with tunable microwave absorption properties. Adv. Powder Technol. 2020, 31, 4642–4647.

[37]

Jia, Z.; Duan, Y. P.; Li, S. Q.; Li, X. G.; Liu, S. H. The effects of high magnetic field on the morphology and microwave electromagnetic properties of MnO2 powder. J. Solid State Chem. 2010, 183, 1490–1495.

[38]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. (Weinh. ) 2022, 9, 2105553.

[39]

Xue, W.; Yang, G.; Bi, S.; Zhang, J. Y.; Hou, Z. L. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 2021, 173, 521–527.

[40]

He, P.; Hou, Z. L.; Zhang, K. L.; Li, J.; Yin, K.; Feng, S.; Bi, S. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 2017, 52, 8258–8267.

[41]

Song, W. L.; Zhou, Z. L.; Wang, L. C.; Cheng, X. D.; Chen, M. J.; He, R. J.; Chen, H. S.; Yang, Y. Z.; Fang, D. N. Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells. ACS Appl. Mater. Interfaces 2017, 9, 43179–43187.

[42]

Mahani, A. A.; Motahari, S.; Nayyeri, V. Electromagnetic and microwave absorption characteristics of PMMA composites filled with a nanoporous resorcinol formaldehyde based carbon aerogel. RSC Adv. 2018, 8, 10855–10864.

[43]

Tang, M.; Zhang, J. Y.; Bi, S.; Hou, Z. L.; Shao, X. H.; Zhan, K. T.; Cao, M. S. Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states. ACS Appl. Mater. Interfaces 2019, 11, 33285–33291.

[44]

Saini, L.; Patra, M. K.; Dhaka, M. K.; Jani, R. K.; Gupta, G. K.; Dixit, A.; Vadera, S. R. Ni/graphitic carbon core–shell nanostructure-based light weight elastomeric composites for Ku-band microwave absorption applications. CrystEngComm 2018, 20, 4630–4640.

[45]

Dai, L. N.; Xie, S. K.; Yu, M. J.; Ci, L. J. Fabrication and electromagnetic properties of carbon-based iron nitride composite. J. Magn. Magn. Mater. 2018, 466, 22–27.

[46]

Zhao, H. B.; Cheng, J. B.; Zhu, J. Y.; Wang, Y. Z. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 2019, 7, 441–448.

[47]

Wang, B. L.; Chen, H. Y.; Wang, S.; Shi, Y.; Liu, X. D.; Fu, Y. G.; Liu, T. Construction of core–shell structured Co7Fe3@C nanocapsules with strong wideband microwave absorption at ultra-thin thickness. Carbon 2021, 184, 223–231.

File
12274_2022_5099_MOESM1_ESM.pdf (838 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2022
Revised: 01 September 2022
Accepted: 22 September 2022
Published: 29 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 62175010 and 62005010) and Aeronautical Science Foundation of China (No. 202000270S9002). The characterization results were supported by the Beijing Zhongkebaice Technology Service Co., Ltd.

Return