AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ionic liquid-wrapped MXene film with bowl-like structures for highly integrated micro-supercapacitor array with ultrahigh output voltage

Cai-Yun Ren1Sheng-You Qiu2Jing-Ru Zhai3Ke-Qi Zhang1Jia-Xing Lu1Jian Gao1( )Chuang Wang2Yong-Chao Zhang1Xiao-Dong Zhu1( )
State Key Laboratory Base of Eco-Chemical Engineering, Institute of Chemical Technology, Qingdao University of Science & Technology, Qingdao 266042, China
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
School of Materials, Sun Yat-sen University, Shenzhen 518107, China
Show Author Information

Graphical Abstract

The high-energy micro-supercapacitor (MSC) based on MXene-ionic liquid (IL) film with bowl-like structures is fabricated. The ionic liquid as spacer and electrolyte is retained in the interlamination of MXene-IL film in virtue of MXene-TW20-IL (TW20 = tween-20) microemulsion, enlarging ion-accessible surface area and voltage window of MXene electrode. Customizable integrated designs of MSC array fulfill the requirements of microelectronic devices for energy and voltage.

Abstract

Recent researches in the development of in-plane micro-supercapacitor (MSC) have been dedicated to advancing its energy density in a finite storage area. However, the low ion-accessible surface area of plane electrode material has been the bottleneck limiting the energy output of MSC. Herein, we design a stable ionic liquid (IL)-MXene microemulsion system in virtue of tween-20 (TW20), gathering IL-TW20 microdroplets around MXene nanosheets. The microemulsion can adhere on the current collector and form the dense MXene-TW20-IL film. The IL as spacer and electrolyte is retained in the interlamination of MXene with the elimination of the TW20 during heat treatment, which enlarges the ion-accessible surface area of the MXene electrode. Thus, the MSC based on the flexible MXene-IL film exhibits a high areal capacitance (44.6 mF·cm−2), a high areal and volumetric energy density (50.7 μW·h·cm−2 and 39 mW·h·cm−3), surpassing most of the reported MXene-based MSCs. And the MSC unit can be arbitrarily integrated in terms of various energy and voltage requirements. For instance, the integrated array with thirty MSC units in series realizes a high voltage output of 90 V, widening the range of application in next-generation microelectronic devices.

Electronic Supplementary Material

Video
12274_2022_5098_MOESM1_ESM.mp4
12274_2022_5098_MOESM2_ESM.mp4
Download File(s)
12274_2022_5098_MOESM3_ESM.pdf (1,006.1 KB)

References

[1]

Bounor, B.; Asbani, B.; Douard, C.; Favier, F.; Brousse, T.; Lethien, C. On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Mater. 2021, 38, 520–527.

[2]

Gao, J.; Shao, C. X.; Shao, S. X.; Wan, F.; Gao, C.; Zhao, Y.; Jiang, L.; Qu, L. T. Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array. Small 2018, 14, 1801809.

[3]

Ma, R.; Chen, Z. T.; Zhao, D. N.; Zhang, X. J.; Zhuo, J. T.; Yin, Y. J.; Wang, X. F.; Yang, G. W.; Yi, F. Ti3C2Tx MXene for electrode materials of supercapacitors. J. Mater. Chem. A 2021, 9, 11501–11529.

[4]

Gao, J.; Shao, C. X.; Shao, S. X.; Bai, C. C.; Khalil, U. R.; Zhao, Y.; Jiang, L.; Qu, L. T. Laser-assisted multiscale fabrication of configuration-editable supercapacitors with high energy density. ACS Nano 2019, 13, 7463–7470.

[5]

Lyu, B. Z.; Kim, M.; Jing, H. Y.; Kang, J.; Qian, C.; Lee, S.; Cho, J. H. Large-area MXene electrode array for flexible electronics. ACS Nano 2019, 13, 11392–11400.

[6]

Tian, W. Q.; VahidMohammadi, A.; Reid, M. S.; Wang, Z.; Ouyang, L. Q.; Erlandsson, J.; Pettersson, T.; Wågberg, L.; Beidaghi, M.; Hamedi, M. M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 2019, 31, 1902977.

[7]

Ma, J. X.; Zheng, S. H.; Cao, Y. X.; Zhu, Y. Y.; Das, P.; Wang, H.; Liu, Y.; Wang, J. M.; Chi, L. P.; Liu, S. Z. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv. Energy Mater. 2021, 11, 2100746.

[8]

Xia, M. Y.; Ning, J.; Feng, X.; Guo, H. B.; Wang, D.; Zhang, J. C.; Hao, Y. Ionization-bombardment assisted deposition of MXene/SiC heterostructure for micro-supercapacitor with enhanced sodium storage. Chem. Eng. J. 2022, 428, 131114.

[9]

Tu, T. T.; Liang, B.; Zhang, S. S.; Li, T. Y.; Zhang, B.; Xu, S. Y.; Mao, X. Y.; Cai, Y.; Fang, L.; Ye, X. S. Controllable patterning of porous MXene (Ti3C2) by metal-assisted electro-gelation method. Adv. Funct. Mater. 2021, 31, 2101374.

[10]

Feng, X.; Ning, J.; Wang, B. Y.; Guo, H. B.; Xia, M. Y.; Wang, D.; Zhang, J. C.; Wu, Z. S.; Hao, Y. Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene. Nano Energy 2021, 72, 104741.

[11]

Wang, C. D.; Chen, S. M.; Xie, H.; Wei, S. Q.; Wu, C. Q.; Song, L. Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage. Adv. Energy Mater. 2019, 9, 1802977.

[12]

Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 2019, 14, 640–650.

[13]

Cao, Z. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Mater. 2021, 40, 10–21.

[14]

She, Z. M.; Ghosh, D.; Pope, M. A. Decorating graphene oxide with ionic liquid nanodroplets: An approach leading to energy-dense, high-voltage supercapacitors. ACS Nano 2017, 11, 10077–10087.

[15]

Chen, H. W.; Ma, H. Y.; Zhang, P. P.; Wen, Y. Y.; Qu, L. T.; Li, C. Pristine titanium carbide MXene hydrogel matrix. ACS Nano 2020, 14, 10471–10479.

[16]

Tang, J. Y.; Huang, X.; Lin, T. E.; Qiu, T. F.; Huang, H. M.; Zhu, X. B.; Gu, Q. F.; Luo, B.; Wang, L. Z. MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage Mater. 2020, 26, 550–559.

[17]

Liu, H.; Zhang, X.; Zhu, Y. F.; Cao, B.; Zhu, Q. Z.; Zhang, P.; Xu, B.; Wu, F.; Chen, R. J. Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 2019, 11, 65.

[18]

Chen, X. F.; Zhu, Y. Z.; Zhang, M.; Sui, J. Y.; Peng, W. C.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. N-butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 2019, 13, 9449–9456.

[19]

Zhao, N. N.; Zhang, F. C.; Zhan, F.; Yi, D.; Yang, Y. J.; Cui, W. B.; Wang, X. Fe3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature. J. Mater. Sci. Technol. 2021, 67, 156–164.

[20]

Huang, X. W.; Wu, P. Y. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv. Funct. Mater. 2020, 30, 1910048.

[21]

Li, X. R.; Li, H. P.; Fan, X. Q.; Shi, X. L.; Liang, J. J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 2020, 10, 1903794.

[22]

Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. F. Turning trash into treasure: Additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, 2000716.

[23]

Zhang, C. F.; McKeon, L.; Kremer, M. P.; Park, S. H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileáin, C. Ó.; McEvoy, N.; Nerl, H. C. et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795.

[24]

Zhang, C. F.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.

[25]

Kurra, N.; Ahmed, B.; Gogotsi, Y.; Alshareef, H. N. MXene-on-paper coplanar microsupercapacitors. Adv. Energy Mater. 2016, 6, 1601372.

[26]

Tang, J.; Yi, W. D.; Zhong, X. W.; Zhang, C. F.; Xiao, X.; Pan, F.; Xu, B. M. Laser writing of the restacked titanium carbide MXene for high performance supercapacitors. Energy Storage Mater. 2020, 32, 418–424.

[27]

Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

[28]

El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

[29]

Hu, H. B.; Hua, T. An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors. J. Mater. Chem. A 2017, 5, 19639–19648.

[30]

Huang, H. C.; Su, H.; Zhang, H. T.; Xu, L. D.; Chu, X.; Hu, C. F.; Liu, H.; Chen, N. J.; Liu, F. Y.; Deng, W. et al. Extraordinary areal and volumetric performance of flexible solid-state micro-supercapacitors based on highly conductive freestanding Ti3C2Tx films. Adv. Electron. Mater. 2018, 4, 1800179.

[31]

Li, H. Y.; Hou, Y.; Wang, F. X.; Lohe, M. R.; Zhuang, X. D.; Niu, L.; Feng, X. L. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.

[32]

Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1, e9120002.

Nano Research
Pages 4926-4932
Cite this article:
Ren C-Y, Qiu S-Y, Zhai J-R, et al. Ionic liquid-wrapped MXene film with bowl-like structures for highly integrated micro-supercapacitor array with ultrahigh output voltage. Nano Research, 2023, 16(4): 4926-4932. https://doi.org/10.1007/s12274-022-5098-4
Topics:

924

Views

14

Crossref

16

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 16 July 2022
Revised: 06 September 2022
Accepted: 24 September 2022
Published: 28 October 2022
© Tsinghua University Press 2022
Return