Journal Home > Volume 16 , Issue 4

The construction of silicon–oxygen bonds has been highlighted as an exciting achievement in organosilicon and green chemistry, but their synthetic efficiency has great improvement potential, so it is crucial to explore and achieve an effective approach for synthesizing such compounds. In this study, we successfully prepared the highly dispersed platinum single-atom catalyst (Pt SAC/N-C) through a coordination-assisted strategy with a mixture of ligands (H2bpdc and H2bpydc), which were used for the O-silylation of alcohols with silanes. The strong coordination between Pt2+ and the Pyridine N at the skeleton of UiO-67 plays a critical role in accessing the atomically isolated dispersion of Pt sites. Without the assistance of the H2bpydc ligands, the Pt/ UiO-67-bpdc precursor is prone to aggregation during the pyrolysis process, resulting in the formation of Pt nanoparticles. Aided by advanced characterization techniques of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, it has been demonstrated that atomically dispersed Pt was formed on the UiO-67 through a local structure of four-coordinated Pt-N4, exhibiting a high actual Pt loading content (0.6962 wt.%). In the oxidation of silanes, the Pt SAC/N-C catalyst showed a high turnover frequency (TOF) value (up to 9,920 h−1) when the catalyst loading decreased to 0.005%. Excellent performance was maintained during recycling experiments, indicating high stability of the catalyst.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Construction of highly dispersed Pt single sites and high-efficiency-heterocatalysis silylation of alcohols with silanes

Show Author's information Qiulian Wei1,2Yunqiang Sun2( )Shan Wang1,2Zunfu Hu2Qingyun Liu1( )Xiuwen Zheng1,2( )
School of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266510, China
Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China

Abstract

The construction of silicon–oxygen bonds has been highlighted as an exciting achievement in organosilicon and green chemistry, but their synthetic efficiency has great improvement potential, so it is crucial to explore and achieve an effective approach for synthesizing such compounds. In this study, we successfully prepared the highly dispersed platinum single-atom catalyst (Pt SAC/N-C) through a coordination-assisted strategy with a mixture of ligands (H2bpdc and H2bpydc), which were used for the O-silylation of alcohols with silanes. The strong coordination between Pt2+ and the Pyridine N at the skeleton of UiO-67 plays a critical role in accessing the atomically isolated dispersion of Pt sites. Without the assistance of the H2bpydc ligands, the Pt/ UiO-67-bpdc precursor is prone to aggregation during the pyrolysis process, resulting in the formation of Pt nanoparticles. Aided by advanced characterization techniques of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, it has been demonstrated that atomically dispersed Pt was formed on the UiO-67 through a local structure of four-coordinated Pt-N4, exhibiting a high actual Pt loading content (0.6962 wt.%). In the oxidation of silanes, the Pt SAC/N-C catalyst showed a high turnover frequency (TOF) value (up to 9,920 h−1) when the catalyst loading decreased to 0.005%. Excellent performance was maintained during recycling experiments, indicating high stability of the catalyst.

Keywords: heterogeneous catalysis, single-atom catalysis, high-dispersion, O-silylation

References(48)

[1]

Yan, H.; Su, C. L.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793–8814.

[2]

Lai, W. H.; Zhang, L. F.; Yan, Z. C.; Hua, W. B.; Indris, S.; Lei, Y. J.; Liu, H. W.; Wang, Y. X.; Hu, Z. P.; Liu, H. K. et al. Activating inert surface Pt single atoms via subsurface doping for oxygen reduction reaction. Nano Lett. 2021, 21, 7970–7978.

[3]

Parrott, M. C.; Luft, J. C.; Byrne, J. D.; Fain, J. H.; Napier, M. E.; DeSimone, J. M. Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials. J. Am. Chem. Soc. 2010, 132, 17928–17932.

[4]

Teimuri-Mofrad, R.; Abbasi, H.; Safa, K. D.; Tahmasebi, B. Synthesis of novel bis[(tris(dimethylsilyl)methyl)alkyl]ferrocene derivatives as new ferrocenyl multi-functional silyl ether compounds. ARKIVOC 2016, 4, 371–384.

[5]

Chen, L.; Yu, L.; Deng, Y.; Zheng, Z. J.; Xu, Z.; Cao, J.; Xu, L. W. C–H functionalization/C–O bond cleavage of benzyl silyl ethers with ynamides for the chemoselective synthesis of skeletally diverse compounds. Adv. Synth. Catal. 2016, 358, 480–485.

[6]

Mir, R.; Dudding, T. Phase-transfer catalyzed O-silyl ether deprotection mediated by a cyclopropenium cation. J. Org. Chem. 2017, 82, 709–714.

[7]

Hayashi, Y.; Itoh, T.; Ohkubo, M.; Ishikawa, H. Asymmetric michael reaction of acetaldehyde catalyzed by diphenylprolinol silyl ether. Angew. Chem., Int. Ed. 2008, 47, 4722–4724.

[8]

Field, L. D.; Messerle, B. A.; Rehr, M.; Soler, L. P.; Hambley, T. W. Cationic iridium(I) complexes as catalysts for the alcoholysis of silanes. Organometallics 2003, 22, 2387–2395.

[9]

Chung, M. K.; Orlova, G.; Goddard, J. D.; Schlaf, M.; Harris, R.; Beveridge, T. J.; White, G.; Hallett, F. R. Regioselective silylation of sugars through palladium nanoparticle-catalyzed silane alcoholysis. J. Am. Chem. Soc. 2002, 124, 10508–10518.

[10]

Wang, X.; Li, P.; Li, Z. J.; Chen, W. X.; Zhou, H.; Zhao, Y. F.; Wang, X. Q.; Zheng, L. R.; Dong, J. C.; Lin, Y. et al. 2D MOF induced accessible and exclusive Co single sites for an efficient O-silylation of alcohols with silanes. Chem. Commun. 2019, 55, 6563–6566.

[11]

Sridhar, M.; Raveendra, J.; China Ramanaiah, B.; Narsaiah, C. An efficient synthesis of silyl ethers of primary alcohols, secondary alcohols, phenols and oximes with a hydrosilane using InBr3 as a catalyst. Tetrahedron Lett. 2011, 52, 5980–5982.

[12]

Raffa, P.; Evangelisti, C.; Vitulli, G.; Salvadori, P. First examples of gold nanoparticles catalyzed silane alcoholysis and silylative pinacol coupling of carbonyl compounds. Tetrahedron Lett. 2008, 49, 3221–3224.

[13]

Kim, S.; Kwon, M. S.; Park, J. Silylation of primary alcohols with recyclable ruthenium catalyst and hydrosilanes. Tetrahedron Lett. 2010, 51, 4573–4575.

[14]

Biffis, A.; Braga, M.; Basato, M. Solventless silane alcoholysis catalyzed by recoverable dirhodium(II) perfluorocarboxylates. Adv. Synth. Catal. 2004, 346, 451–458.

[15]

Hara, K.; Akiyama, R.; Takakusagi, S.; Uosaki, K.; Yoshino, T.; Kagi, H.; Sawamura, M. Self-assembled monolayers of compact phosphanes with alkanethiolate pendant groups: Remarkable reusability and substrate selectivity in Rh catalysis. Angew. Chem. 2008, 120, 5709–5712.

[16]

Marciniec, B. Catalysis by transition metal complexes of alkene silylation-recent progress and mechanistic implications. Coord. Chem. Rev. 2005, 249, 2374–2390.

[17]

Lewis, L. N.; Stein, J.; Gao, Y.; Colborn, R. E.; Hutchins, G. Platinum catalysts used in the silicones industry: Their synthesis and activity in hydrosilylation. Platinum Met. Rev. 1997, 41, 66–75.

[18]

Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron catalysts for selective anti-markovnikov alkene hydrosilylation using tertiary silanes. Science 2012, 335, 567–570.

[19]

Dong, P. Y.; Wang, Y.; Zhang, A.; Cheng, T.; Xi, X. G.; Zhang, J. L. Platinum single atoms anchored on a covalent organic framework: Boosting active sites for photocatalytic hydrogen evolution. ACS Catal. 2021, 11, 13266–13279.

[20]

Thomas, J. M.; Raja, R.; Lewis, D. W. Single-site heterogeneous catalysts. Angew. Chem., Int. Ed. 2005, 44, 6456–6482.

[21]

Hutchings, G. J. Heterogeneous catalysts—Discovery and design. J. Mater. Chem. 2009, 19, 1222–1235.

[22]

Weckhuysen, B. M. Preface: Recent advances in the in-situ characterization of heterogeneous catalysts. Chem. Soc. Rev. 2010, 39, 4557–4559.

[23]

Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

[24]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[25]

Jiao, L.; Jiang, H. L. Metal–organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

[26]

Zhang, H. B.; Lu, X. F.; Wu, Z. P.; Lou, X. W. D. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 2020, 6, 1288–1301.

[27]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[28]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[29]

Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y.; Mou, X. M. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.

[30]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[31]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[32]

Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 2018, 13, 702–707.

[33]

Chen, F.; Jiang, X. Z.; Zhang, L. L.; Lang, R.; Qiao, B. T. Single-atom catalysis: Bridging the homo- and heterogeneous catalysis. Chin. J. Catal. 2018, 39, 893–898.

[34]

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

[35]

Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem. Mater. 2017, 29, 26–39.

[36]

Chen, Y. Z.; Zhang, ; R.; Jiao, L.; Jiang, H. L. Metal–organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

[37]

Zhu, B. J.; Xia, D. G.; Zou, R. Q. Metal–organic frameworks and their derivatives as bifunctional electrocatalysts. Coord. Chem. Rev. 2018, 376, 430–448.

[38]

Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal–organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

[39]

Song, Z. X.; Zhang, L.; Doyle-Davis, K.; Fu, X. Z.; Luo, J. L.; Sun, X. L. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv. Energy Mater. 2020, 10, 2001561.

[40]

Wang, Q.; Astruc, D. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

[41]

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

[42]

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

[43]

Fei, H. H.; Cohen, S. M. A robust, catalytic metal–organic framework with open 2,2’-bipyridine sites. Chem. Commun. 2014, 50, 4810–4812.

[44]

Øien, S.; Agostini, G.; Svelle, S.; Borfecchia, E.; Lomachenko, K. A.; Mino, L.; Gallo, E.; Bordiga, S.; Olsbye, U.; Lillerud, K. P.; Lamberti, C. Probing reactive platinum sites in UiO-67 zirconium metal–organic frameworks. Chem. Mater. 2015, 27, 1042–1056.

[45]

Toyao, T.; Miyahara, K.; Fujiwaki, M.; Kim, T. H.; Dohshi, S.; Horiuchi, Y.; Matsuoka, M. Immobilization of Cu complex into Zr-based MOF with bipyridine units for heterogeneous selective oxidation. J. Phys. Chem. C 2015, 119, 8131–8137.

[46]

Dubed Bandomo, G. C.; Mondal, S. S.; Franco, F.; Bucci, A.; Martin-Diaconescu, V.; Ortuño, M. A.; van Langevelde, P. H.; Shafir, A.; López, N.; Lloret-Fillol, J. Mechanically constrained catalytic Mn(CO)3Br single sites in a two-dimensional covalent organic framework for CO2 electroreduction in H2O. ACS Catal. 2021, 11, 7210–7222.

[47]

Wu, X.; Zhang, H. B.; Dong, J. C.; Qiu, M.; Kong, J. T.; Zhang, Y. F.; Li, Y.; Xu, G. L.; Zhang, J.; Ye, J. H. Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 2018, 45, 109–117.

[48]

Li, C.; Chen, Z.; Yi, H.; Cao, Y.; Du, L.; Hu, Y. D.; Kong, F. P.; Kramer Campen, R.; Gao, Y. Z.; Du, C. Y. et al. Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 15902–15907.

File
12274_2022_5097_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 July 2022
Revised: 08 September 2022
Accepted: 22 September 2022
Published: 02 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22075122 and 21971152), the Natural Science Foundation of Shandong Province (Nos. ZR2019BB038, ZR2020QB170, and ZR2020MB003). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Return