AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The role of CO2 dissociation in CO2 hydrogenation to ethanol on CoCu/silica catalysts

Zhongyan Wang1Chengsheng Yang1Xianghong Li1Xiwen Song1Chunlei Pei1Zhi-Jian Zhao1( )Jinlong Gong1,2,3
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
Show Author Information

Graphical Abstract

CO2 can dissociate on CoCu catalysts supported on different silica supports. The interaction between metal nanoparticles and support can infect the C–C dissociation process, tuning the intermediate adsorbed on active sites. CoCu/MCM-41 catalysts can dissociate CO2 moderately, leaving sufficient active sites for C–C coupling and selectivity of C2+ products. On the other hand, CO2 dissociates rapidly on CoCu/SiO2, resulting in active sites occupied, inhibiting C–C coupling.

Abstract

CoCu-based catalysts are widely used in COx hydrogenation reactions to produce higher alcohols due to the C–C coupling ability of Co and the ability of Cu to produce alcohols. This work describes the role of easily happened CO2 dissociation on the CoCu surface during the reaction, using different silica support to tune the metal–support interaction, and reaches different selectivity to ethanol. CoCu supported on mesoporous silica MCM-41 shows ethanol selectivity as high as 85.3%, and the ethanol space-time yield (STY) is 0.229 mmol/(gmetal∙h), however, poor selectivity to ethanol as low as 28.8% is observed on CoCu supported on amorphous silica. The different selectivity is due to the different intensities of CO2 dissociation on the catalysts. The adsorbed O* produced via CO2 dissociation can occupy the cobalt hollow sites on CoCu surfaces, which are also the adsorption sites of C1 intermediates for further C–C coupling.

Electronic Supplementary Material

Download File(s)
12274_2022_5092_MOESM1_ESM.pdf (675.7 KB)

References

[1]

Centi, G.; Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 2009, 148, 191–205.

[2]

Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727.

[3]

Porosoff, M. D.; Yan, B. H.; Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci. 2016, 9, 62–73.

[4]

Xu, D.; Wang, Y. Q.; Ding, M. Y.; Hong, X. L.; Liu, G. L.; Tsang, S. C. E. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021, 7, 849–881.

[5]

Saeidi, S.; Najari, S.; Hessel, V.; Wilson, K.; Keil, F. J.; Concepción, P.; Suib, S. L.; Rodrigues, A. E. Recent advances in CO2 hydrogenation to value-added products-current challenges and future directions. Prog. Energy Combust. Sci. 2021, 85, 100905.

[6]

Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838.

[7]

Bai, S. X.; Shao, Q.; Wang, P. T.; Dai, Q. G.; Wang, X. Y.; Huang, X. Q. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles. J. Am. Chem. Soc. 2017, 139, 6827–6830.

[8]

An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.

[9]

Xu, D.; Ding, M. Y.; Hong, X. L.; Liu, G. L.; Tsang, S. C. E. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst. ACS Catal. 2020, 10, 5250–5260.

[10]

Ao, M.; Pham, G. H.; Sunarso, J.; Tade, M. O.; Liu, S. M. Active centers of catalysts for higher alcohol synthesis from syngas: A review. ACS Catal. 2018, 8, 7025–7050.

[11]

Luk, H. T.; Mondelli, C.; Ferré, D. C.; Stewart, J. A.; Pérez-Ramírez, J. Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 2017, 46, 1358–1426.

[12]

Yang, C. S.; Mu, R. T.; Wang, G. S.; Song, J. M.; Tian, H.; Zhao, Z. J.; Gong, J. L. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chem. Sci. 2019, 10, 3161–3167.

[13]

Wang, G. S.; Luo, R.; Yang, C. S.; Song, J. M.; Xiong, C. Y.; Tian, H.; Zhao, Z. J.; Mu, R. T.; Gong, J. L. Active sites in CO2 hydrogenation over confined VOx-Rh catalysts. Sci. China Chem. 2019, 62, 1710–1719.

[14]

Kusama, H.; Okabe, K.; Sayama, K.; Arakawa, H. CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts. Catal. Today 1996, 28, 261–266.

[15]

Ouyang, B.; Xiong, S. H.; Zhang, Y. H.; Liu, B.; Li, J. L. The study of morphology effect of Pt/Co3O4 catalysts for higher alcohol synthesis from CO2 hydrogenation. Appl. Catal. A Gen. 2017, 543, 189–195.

[16]

Wang, L. X.; Wang, L.; Zhang, J.; Liu, X. L.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J. Y.; Dong, X.; Yoo, S. J. et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew. Chem., Int. Ed. 2018, 57, 6104–6108.

[17]

Wang, L. X.; He, S. X.; Wang, L.; Lei, Y.; Meng, X. J.; Xiao, F. S. Cobalt-nickel catalysts for selective hydrogenation of carbon dioxide into ethanol. ACS Catal. 2019, 9, 11335–11340.

[18]

Zhang, S. N.; Liu, X. F.; Shao, Z. L.; Wang, H.; Sun, Y. H. Direct CO2 hydrogenation to ethanol over supported Co2C catalysts: Studies on support effects and mechanism. J. Catal. 2020, 382, 86–96.

[19]

He, Z. H.; Qian, Q. L.; Ma, J.; Meng, Q. L.; Zhou, H. C.; Song, J. L.; Liu, Z. M.; Han, B. X. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions. Angew. Chem., Int. Ed. 2016, 55, 737–741.

[20]

Yang, C. S.; Liu, S. H.; Wang, Y. N.; Song, J. M.; Wang, G. S.; Wang, S.; Zhao, Z. J.; Mu, R. T.; Gong, J. L. The interplay between structure and product selectivity of CO2 hydrogenation. Angew. Chem., Int. Ed. 2019, 58, 11242–11247.

[21]

Li, W. H.; Zhang, G. H.; Jiang, X.; Liu, Y.; Zhu, J.; Ding, F. S.; Liu, Z. M.; Guo, X. W.; Song, C. S. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): Effects of crystal phase of supports and metal–support interaction on tuning product distribution. ACS Catal. 2019, 9, 2739–2751.

[22]

Singh, J. A.; Cao, A.; Schumann, J.; Wang, T.; Nørskov, J. K.; Abild-Pedersen, F.; Bent, S. F. Theoretical and experimental studies of CoGa catalysts for the hydrogenation of CO2 to methanol. Catal. Lett. 2018, 148, 3583–3591.

[23]

Su, J. J.; Zhang, Z. P.; Fu, D. L.; Liu, D.; Xu, X. C.; Shi, B. F.; Wang, X.; Si, R.; Jiang, Z.; Xu, J. et al. Higher alcohols synthesis from syngas over CoCu/SiO2 catalysts: Dynamic structure and the role of Cu. J. Catal. 2016, 336, 94–106.

[24]

Xu, X. C.; Su, J. J.; Tian, P. F.; Fu, D. L.; Dai, W. W.; Mao, W.; Yuan, W. K.; Xu, J.; Han, Y. F. First-principles study of C2 oxygenates synthesis directly from syngas over CoCu bimetallic catalysts. J. Phys. Chem. C 2015, 119, 216–227.

[25]

Xiang, Y. Z.; Barbosa, R.; Kruse, N. Higher alcohols through CO hydrogenation over CoCu catalysts: Influence of precursor activation. ACS Catal. 2014, 4, 2792–2800.

[26]

Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299.

[27]

Qiu, M.; Tao, H. L.; Li, Y. L.; Li, Y.; Ding, K. N.; Huang, X.; Chen, W. K.; Zhang, Y. F. Toward improving CO2 dissociation and conversion to methanol via CO-hydrogenation on Cu (100) surface by introducing embedded Co nanoclusters as promoters: A DFT study. Appl. Surf. Sci. 2018, 427, 837–847.

[28]

Liu, C.; Cundari, T. R.; Wilson, A. K. CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces:In comparison with homogeneous catalysis. J. Phys. Chem. C 2012, 116, 5681–5688.

[29]

Liu, Q.; Han, Y.; Cai, J.; Crumlin, E. J.; Li, Y. M.; Liu, Z. CO2 activation on cobalt surface in the presence of H2O: An ambient-pressure X-ray photoelectron spectroscopy study. Catal. Lett. 2018, 148, 1686–1691.

[30]

Lin, T. J.; Gong, K.; Wang, C. Q.; An, Y. L.; Wang, X. X.; Qi, X. Z.; Li, S. G.; Lu, Y. W.; Zhong, L. S.; Sun, Y. H. Fischer–Tropsch synthesis to olefins: Catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment. ACS Catal. 2019, 9, 9554–9567.

[31]

Visconti, C. G.; Lietti, L.; Tronconi, E.; Forzatti, P.; Zennaro, R.; Finocchio, E. Fischer–Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas. Appl. Catal. A Gen. 2009, 355, 61–68.

[32]

Panpranot, J.; Goodwin, J. G. Jr.; Sayari, A. Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catal. Today 2002, 77, 269–284.

[33]

Panpranot, J.; Goodwin, J. G. Jr.; Sayari, A. CO hydrogenation on Ru-promoted Co/MCM-41 catalysts. J. Catal. 2002, 211, 530–539.

[34]

Li, X. K.; Ji, W. J.; Zhao, J.; Wang, S. J.; Au, C. T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal. 2005, 236, 181–189.

[35]

Liang, J.; Liang, Z. B.; Zou, R. Q.; Zhao, Y. L. Heterogeneous catalysis in zeolites, mesoporous silica, and metal–organic frameworks. Adv. Mater. 2017, 29, 1701139.

[36]

Davidson, M.; Ji, Y. Z.; Leong, G. J.; Kovach, N. C.; Trewyn, B. G.; Richards, R. M. Hybrid mesoporous silica/noble-metal nanoparticle materials-synthesis and catalytic applications. ACS Appl. Nano Mater. 2018, 1, 4386–4400.

[37]

Yang, Q. L.; Cao, A.; Kang, N.; Ning, H. Y.; Wang, J. M.; Liu, Z. T.; Liu, Y. Bimetallic nano Cu-Co based catalyst for direct ethanol synthesis from syngas and its structure variation with reaction time in slurry reactor. Ind. Eng. Chem. Res. 2017, 56, 2889–2898.

[38]

Smith, M. L.; Campos, A.; Spivey, J. J. Reduction processes in Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts. Catal. Today 2012, 182, 60–66.

[39]

Su, J. J.; Mao, W.; Xu, X. C.; Yang, Z.; Li, H. L.; Xu, J.; Han, Y. F. Kinetic study of higher alcohol synthesis directly from syngas over CoCu/SiO2 catalysts. AIChE J. 2014, 60, 1797–1809.

[40]

Ma, H. T.; Yuan, Z. Y.; Wang, Y.; Bao, X. H. Temperature-programmed surface reaction study on C2-oxygenate synthesis over SiO2 and nanoporous zeolitic material supported Rh-Mn catalysts. Surf. Interface Anal. 2001, 32, 224–227.

[41]

Kong, Y.; Zhu, H. Y.; Yang, G.; Guo, X. F.; Hou, W. H.; Yan, Q. J.; Gu, M.; Hu, C. Investigation of the structure of MCM-41 samples with a high copper content. Adv. Funct. Mater. 2004, 14, 816–820.

[42]

Guo, X. P.; Traitangwong, A.; Hu, M. X.; Zuo, C. C.; Meeyoo, V.; Peng, Z. J.; Li, C. S. Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material. Energy Fuels 2018, 32, 3681–3689.

[43]

Wang, N.; Yu, X. P.; Wang, Y.; Chu, W.; Liu, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal. Today 2013, 212, 98–107.

[44]

Wang, D.; Bi, Q. Y.; Yin, G. H.; Zhao, W. L.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts. Chem. Commun. 2016, 52, 14226–14229.

[45]

Ko, J.; Kim, B. K.; Han, J. W. Density functional theory study for catalytic activation and dissociation of CO2 on bimetallic alloy surfaces. J. Phys. Chem. C 2016, 120, 3438–3447.

[46]

Khassin, A. A.; Yurieva, T. M.; Kaichev, V. V.; Bukhtiyarov, V. I.; Budneva, A. A.; Paukshtis, E. A.; Parmon, V. N. Metal–support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J. Mol. Catal. A Chem. 2001, 175, 189–204.

[47]

Morales, F.; de Smit, E.; de Groot, F. M. F.; Visser, T.; Weckhuysen, B. M. Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer–Tropsch catalysts. J. Catal. 2007, 246, 91–99.

[48]

Smith, M. L.; Kumar, N.; Spivey, J. J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS. J. Phys. Chem. C 2012, 116, 7931–7939.

[49]

Wang, L. B.; Zhang, W. B.; Zheng, X. S.; Chen, Y. Z.; Wu, W. L.; Qiu, J. X.; Zhao, X. C.; Zhao, X.; Dai, Y. Z.; Zeng, J. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869–876.

[50]

de Lima, S. M.; da Silva, A. M.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B. New approaches to improving catalyst stability over Pt/ceria during ethanol steam reforming: Sn addition and CO2 co-feeding. Appl. Catal. B:Environ. 2010, 96, 387–398.

[51]

da Silva, A. M.; de Souza, K. R.; Mattos, L. V.; Jacobs, G.; Davis, B. H.; Noronha, F. B. The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol. Catal. Today 2011, 164, 234–239.

[52]

Das, T.; Deo, G. Synthesis, characterization and in situ DRIFTS during the CO2 hydrogenation reaction over supported cobalt catalysts. J. Mol. Catal. A Chem. 2011, 350, 75–82.

Nano Research
Pages 6128-6133
Cite this article:
Wang Z, Yang C, Li X, et al. The role of CO2 dissociation in CO2 hydrogenation to ethanol on CoCu/silica catalysts. Nano Research, 2023, 16(5): 6128-6133. https://doi.org/10.1007/s12274-022-5092-x
Topics:
Part of a topical collection:

6134

Views

10

Crossref

8

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 06 May 2022
Revised: 14 September 2022
Accepted: 24 September 2022
Published: 18 November 2022
© Tsinghua University Press 2022
Return