AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Individually-atomic governing d–π* orbital interactions via Cu-promoted optimization of Fe-d band centers for high-efficiency zinc-air battery

Xinyan Zhou1,§Kexin Song1,§Yu Feng1Chao Jiang1Zhongjun Chen2Zizhun Wang1Nailin Yue1Xin Ge1Wei Zhang1( )Weitao Zheng1( )
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, China
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

§ Xinyan Zhou and Kexin Song contributed equally to this work.

Show Author Information

Graphical Abstract

The introduction of Cu atoms effectively elevates the metal d-band configuration in Fe center, thereby increasing the unfilled state of the antibonding orbital. It means that the d–π* orbital interaction between the active center and O2 molecules is significantly enhanced.

Abstract

It is challenging for precise governing of electronic configuration of the individually-atomic catalysts toward optimal electrocatalysis, as d-band configuration of a metal center determines the adsorption behavior of reactive species to the center in oxygen reduction reaction (ORR). The addition of Cu atom modifies the d-band center position of Fe central atom, thus strengthening the d–π* orbital interactions. Herein, FeCu-NC catalyst in the nitrogen-doped carbon (NC) support containing individual dual-metal CuN4/FeN4 sites was prepared by the surface confinement strategy of zeolitic imidazolate framework (ZIF), treated as a model catalyst. Experimentally and theoretically co-verified dual-metal CuN4/FeN4 sites highly dispersed in the NC support, enable transferring more electrons from FeN4 sites to *OH intermediates, thereby accelerating the desorption process of *OH species. Superior to those commercial Pt/C, Our FeCu-NC catalyst exhibited extraordinary ORR activity (with a E1/2 as high as 0.87 V) and cycling stability in 0.1 M KOH electrolyte, and thereof demonstrated excellent discharge performance in zinc-air batteries. Our construction of dual-atom catalysts (DACs) provides a strategy for atom-by-atom designing high-efficiency catalysts via orbital regulation.

Electronic Supplementary Material

Download File(s)
12274_2022_5091_MOESM1_ESM.pdf (3.4 MB)

References

[1]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[2]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[3]

Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

[4]

Song, K. X.; Feng, Y.; Zhou, X. Y.; Qin, T. T.; Zou, X.; Qi, Y. G.; Chen, Z. J.; Rao, J. C.; Wang, Z. Z.; Yue, N. L. et al. Exploiting the trade-offs of electron transfer in MOF-derived single Zn/Co atomic couples for performance-enhanced zinc-air battery. Appl. Catal. B Environ. 2022, 316, 121591.

[5]

Chen, J. W.; Zhang, Z. S.; Yan, H. M.; Xia, G. J.; Cao, H.; Wang, Y. G. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst. Nat. Commun. 2022, 13, 1734.

[6]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[7]

Kuznetsov, D. A.; Chen, Z. X.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single-atom-substituted Mo2CTx: Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: Tracking the evolution of the MXene phase. J. Am. Chem. Soc. 2021, 143, 5771–5778.

[8]

Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

[9]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[10]

Wan, X.; Liu, Q. T.; Liu, J. Y.; Liu, S. Y.; Liu, X. F.; Zheng, L. R.; Shang, J. X.; Yu, R. H.; Shui, J. L. Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat. Commun. 2022, 13, 2963.

[11]

Feng, Y.; Song, K. X.; Zhang, W.; Zhou, X. Y.; Yoo, S. J.; Kim, J. G.; Qiao, S. F.; Qi, Y. G.; Zou, X.; Chen, Z. J. et al. Efficient ORR catalysts for zinc-air battery: Biomass-derived ultra-stable Co nanoparticles wrapped with graphitic layers via optimizing electron transfer. J. Energy Chem. 2022, 70, 211–218.

[12]

Song, K. X.; Feng, Y.; Zhang, W.; Zheng, W. T. MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: Spreading the synthesis strategies and advanced identification. J. Energy Chem. 2022, 67, 391–422.

[13]

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

[14]

Deng, Y. J.; Luo, J. M.; Chi, B.; Tang, H. B.; Li, J.; Qiao, X. C.; Shen, Y. J.; Yang, Y. J.; Jia, C. M.; Rao, P. et al. Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 2021, 11, 2101222.

[15]

Gao, R. J.; Wang, J.; Huang, Z. F.; Zhang, R. R.; Wang, W.; Pan, L.; Zhang, J. F.; Zhu, W. K.; Zhang, X. W.; Shi, C. X. et al. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 2021, 6, 614–623.

[16]

Qin, J. Y.; Liu, H.; Zou, P. C.; Zhang, R.; Wang, C. Y.; Xin, H. L. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 2197–2207.

[17]

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

[18]

Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

[19]

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Liu, H.; Chen, D.; Han, Y. S.; Xu, L.; Yang, J. Core–shell CuPd@NiPd nanoparticles: Coupling lateral strain with electronic interaction toward high-efficiency electrocatalysis. ACS Catal. 2022, 12, 9092–9100.

[20]
Liu, J. W.; Guo, Y.; Fu, X. Z.; Luo, J. L.; Zhi, C. Y. Strengthening absorption ability of Co-N-C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2021.05.008.
[21]

Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

[22]

Zhu, X. F.; Tan, X.; Wu, K. H.; Haw, S. C.; Pao, C. W.; Su, B. J.; Jiang, J. J.; Smith, S. C.; Chen, J. M.; Amal, R. et al. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning. Angew. Chem., Int. Ed. 2021, 60, 21911–21917.

[23]

Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

[24]

Feng, X. T.; Jiao, Q. Z.; Chen, W. X.; Dang, Y. L.; Dai, Z.; Suib, S. L.; Zhang, J. T.; Zhao, Y.; Li, H. S.; Feng, C. H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B Environ. 2021, 286, 119869.

[25]

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

[26]

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

[27]

Li, Z. S.; Li, B. L.; Hu, Y. F.; Wang, S. Y.; Yu, C. L. Highly-dispersed and high-metal-density electrocatalysts on carbon supports for the oxygen reduction reaction: From nanoparticles to atomic-level architectures. Mater. Adv. 2022, 3, 779–809.

[28]

Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

[29]

Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J. N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325.

[30]

Taniguchi, M.; Yoshie, R.; Akikubo, K.; Tateno, A.; Hotozuka, K.; Kawaguchi, N.; Uchida, T.; Tanimura, M.; Tachibana, M. Effect of nitrogen and iron in carbon nanowalls on oxygen reduction reaction. Electrochim. Acta 2019, 306, 132–142.

[31]

Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B Environ. 2021, 280, 119411.

[32]

Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.

[33]

Zhao, K. M.; Liu, S. Q.; Li, Y. Y.; Wei, X. L.; Ye, G. Y.; Zhu, W. W.; Su, Y. K.; Wang, J.; Liu, H. T.; He, Z. et al. Insight into the mechanism of axial ligands regulating the catalytic activity of Fe-N4 sites for oxygen reduction reaction. Adv. Energy Mater. 2022, 12, 2103588.

[34]

Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

[35]

Zhang, Q. Q.; Kumar, P.; Zhu, X. F.; Daiyan, R.; Bedford, N. M.; Wu, K. H.; Han, Z. J.; Zhang, T. R.; Amal, R.; Lu, X. Y. Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 2021, 11, 2100303.

[36]

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

[37]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[38]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

[39]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[40]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[41]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[42]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[43]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

Nano Research
Pages 4634-4642
Cite this article:
Zhou X, Song K, Feng Y, et al. Individually-atomic governing d–π* orbital interactions via Cu-promoted optimization of Fe-d band centers for high-efficiency zinc-air battery. Nano Research, 2023, 16(4): 4634-4642. https://doi.org/10.1007/s12274-022-5091-y
Topics:

5803

Views

13

Crossref

11

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 16 August 2022
Revised: 20 September 2022
Accepted: 22 September 2022
Published: 05 November 2022
© Tsinghua University Press 2022
Return