Journal Home > Volume 16 , Issue 4

The coupling of model batteries and surface-sensitive techniques provides an indispensable platform for interrogating the vital surface/interface processes in battery systems. Here, we report a sandwich-format nanopore-array model battery using an ultrathin graphite electrode and an anodized aluminum oxide (AAO) film. The porous framework of AAO regulates the contact pattern of the electrolyte with the graphite electrode from the inner side, while minimizing contamination on the outer surface. This model battery facilitates repetitive charge–discharge processes, where the graphite electrode is reversibly intercalated and deintercalated, and also allows for the in-situ characterizations of ion intercalation in the graphite electrode. The ion distribution profiles indicate that the intercalating Li ions accumulate in both the inner and outer surface regions of graphite, generating a high capacity of ~ 455 mAh·g−1 (theory: 372 mAh·g−1). The surface enrichment presented herein provides new insights towards the mechanistic understanding of batteries and the rational design strategies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Visualizing surface-enriched Li storage with a nanopore-array model battery

Show Author's information Shiwen Li1,2Guohui Zhang1( )Chao Wang1,2Caixia Meng1Xianjin Li1,3Yanxiao Ning1Qiang Fu1,4( )
State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100049, China
Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Abstract

The coupling of model batteries and surface-sensitive techniques provides an indispensable platform for interrogating the vital surface/interface processes in battery systems. Here, we report a sandwich-format nanopore-array model battery using an ultrathin graphite electrode and an anodized aluminum oxide (AAO) film. The porous framework of AAO regulates the contact pattern of the electrolyte with the graphite electrode from the inner side, while minimizing contamination on the outer surface. This model battery facilitates repetitive charge–discharge processes, where the graphite electrode is reversibly intercalated and deintercalated, and also allows for the in-situ characterizations of ion intercalation in the graphite electrode. The ion distribution profiles indicate that the intercalating Li ions accumulate in both the inner and outer surface regions of graphite, generating a high capacity of ~ 455 mAh·g−1 (theory: 372 mAh·g−1). The surface enrichment presented herein provides new insights towards the mechanistic understanding of batteries and the rational design strategies.

Keywords: lithium ion batteries, nanopore-array model battery, in-situ surface characterization techniques, ion intercalation, surface enrichment effect

References(41)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 2018, 1, 204.

[3]

Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

[4]

Li, L. J.; Fu, L. Z.; Li, M.; Wang, C.; Zhao, Z. X.; Xie, S. C.; Lin, H. C.; Wu, X. W.; Liu, H. D.; Zhang, L. et al. B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. J. Energy Chem. 2022, 71, 588–594.

[5]

Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50–56.

[6]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[7]

Cheng, H. R.; Sun, Q. J.; Li, L. L.; Zou, Y. G.; Wang, Y. Q.; Cai, T.; Zhao, F.; Liu, G.; Ma, Z.; Wahyudi, W. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 2022, 7, 490–513.

[8]

Cai, W. L.; Yao, Y. X.; Zhu, G. L.; Yan, C.; Jiang, L. L.; He, C. X.; Huang, J. Q.; Zhang, Q. A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 2020, 49, 3806–3833.

[9]

Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material—Fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy Fuels 2020, 4, 5387–5416.

[10]

Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

[11]

Schulz, N.; Hausbrand, R.; Wittich, C.; Dimesso, L.; Jaegermann, W. XPS-surface analysis of SEI layers on Li-ion cathodes:Part II. SEI-composition and formation inside composite electrodes. J. Electrochem. Soc. 2018, 165, A833–A846.

[12]

Snyder, C.; Apblett, C.; Grillet, A.; Beechem, T.; Duquette, D. Measuring Li+ inventory losses in LiCoO2/graphite cells using Raman microscopy. J. Electrochem. Soc. 2016, 163, A1036–A1041.

[13]

Chen, Y. X.; Chen, K. H.; Sanchez, A. J.; Kazyak, E.; Goel, V.; Gorlin, Y.; Christensen, J.; Thornton, K.; Dasgupta, N. P. Operando video microscopy of Li plating and re-intercalation on graphite anodes during fast charging. J. Mater. Chem. A 2021, 9, 23522–23536.

[14]

Li, S. W.; Wang, C.; Meng, C. X.; Ning, Y. X.; Zhang, G. H.; Fu, Q. Electrolyte-dependent formation of solid electrolyte interphase and ion intercalation revealed by in situ surface characterizations. J. Energy Chem. 2022, 67, 718–726.

[15]

Zhu, Z. H.; Zhou, Y. F.; Yan, P. F.; Vemuri, R. S.; Xu, W.; Zhao, R.; Wang, X. L.; Thevuthasan, S.; Baer, D. R.; Wang, C. M. In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 2015, 15, 6170–6176.

[16]

Wang, C.; Ning, Y. X.; Huang, H. B.; Li, S. W.; Xiao, C. H.; Chen, Q.; Peng, L.; Guo, S. N.; Li, Y. F.; Liu, C. H. et al. Operando surface science methodology reveals surface effect in charge storage electrodes. Natl. Sci. Rev. 2021, 8, nwaa289.

[17]

Liu, X. R.; Wang, L.; Wan, L. J.; Wang, D. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. ACS Appl. Mater. Interfaces 2015, 7, 9573–9580.

[18]

Shen, C.; Wang, S. W.; Jin, Y.; Han, W. Q. In situ AFM imaging of solid electrolyte interfaces on HOPG with ethylene carbonate and fluoroethylene carbonate-based electrolytes. ACS Appl. Mater. Interfaces 2015, 7, 25441–25447.

[19]

Yao, F.; Güneş, F.; Ta, H. Q.; Lee, S. M.; Chae, S. J.; Sheem, K. Y.; Cojocaru, C. S.; Xie, S. S.; Lee, Y. H. Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 2012, 134, 8646–8654.

[20]

Rikka, V. R.; Sahu, S. R.; Chatterjee, A.; Satyam, P. V.; Prakash, R.; Rao, M. S. R.; Gopalan, R.; Sundararajan, G. In situ/ex situ investigations on the formation of the mosaic solid electrolyte interface layer on graphite anode for lithium-ion batteries. J. Phys. Chem. C 2018, 122, 28717–28726.

[21]

Song, W. X.; Scholtis, E. S.; Sherrell, P. C.; Tsang, D. K. H.; Ngiam, J.; Lischner, J.; Fearn, S.; Bemmer, V.; Mattevi, C.; Klein, N. et al. Electronic structure influences on the formation of the solid electrolyte interphase. Energy Environ. Sci. 2020, 13, 4977–4989.

[22]

Lu, D. P.; Tao, J. H.; Yan, P. F.; Henderson, W. A.; Li, Q. Y.; Shao, Y. Y.; Helm, M. L.; Borodin, O.; Graff, G. L.; Polzin, B. et al. Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes. Nano Lett. 2017, 17, 1602–1609.

[23]

Ding, J. F.; Xu, R.; Yan, C.; Li, B. Q.; Yuan, H.; Huang, J. Q. A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J. Energy Chem. 2021, 59, 306–319.

[24]

Jiang, L. L.; Yan, C.; Yao, Y. X.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem., Int. Ed. 2021, 60, 3402–3406.

[25]

Yang, W.; Xie, H. M.; Shi, B. Q.; Song, H. B.; Qiu, W.; Zhang, Q. In-situ experimental measurements of lithium concentration distribution and strain field of graphite electrodes during electrochemical process. J. Power Sources 2019, 423, 174–182.

[26]

Harris, S. J.; Timmons, A.; Baker, D. R.; Monroe, C. Direct in situ measurements of Li transport in Li-ion battery negative electrodes. Chem. Phys. Lett. 2010, 485, 265–274.

[27]

Persson, K.; Sethuraman, V. A.; Hardwick, L. J.; Hinuma, Y.; Meng, Y. S.; Van Der Ven, A.; Srinivasan, V.; Kostecki, R.; Ceder, G. Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 2010, 1, 1176–1180.

[28]

Sole, C.; Drewett, N. E.; Liu, F.; Abdelkader, A. M.; Kinloch, I. A.; Hardwick, L. J. The role of re-aggregation on the performance of electrochemically exfoliated many-layer graphene for Li-ion batteries. J. Electroanal. Chem. 2015, 753, 35–41.

[29]

Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

[30]

Yadegari, H.; Koronfel, M. A.; Wang, K.; Thornton, D. B.; Stephens, I. E. L.; Molteni, C.; Haynes, P. D.; Ryan, M. P. Operando measurement of layer breathing modes in lithiated graphite. ACS Energy Lett. 2021, 6, 1633–1638.

[31]

Zou, J. L.; Sole, C.; Drewett, N. E.; Velicky, M.; Hardwick, L. J. In situ study of Li intercalation into highly crystalline graphitic flakes of varying thicknesses. J. Phys. Chem. Lett. 2016, 7, 4291–4296.

[32]

Sole, C.; Drewett, N. E.; Hardwick, L. J. In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 2014, 172, 223–237.

[33]

Inaba, M.; Yoshida, H.; Ogumi, Z.; Abe, T.; Mizutani, Y.; Asano, M. In situ Raman study on electrochemical Li intercalation into graphite. J. Electrochem. Soc. 1995, 142, 20–26.

[34]

Yang, C. Y.; Chen, J.; Qing, T. T.; Fan, X. L.; Sun, W.; Von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A. et al. 4. 0 V aqueous Li-ion batteries. Joule 2017, 1, 122–132.

[35]

Tavassol, H.; Jones, E. M. C.; Sottos, N. R.; Gewirth, A. A. Electrochemical stiffness in lithium-ion batteries. Nat. Mater. 2016, 15, 1182–1187.

[36]

Kuhne, M.; Paolucci, F.; Popovic, J.; Ostrovsky, P. M.; Maier, J.; Smet, J. H. Ultrafast lithium diffusion in bilayer graphene. Nat. Nanotechnol. 2017, 12, 895–900.

[37]

Jung, S. C.; Kang, Y. J.; Yoo, D. J.; Choi, J. W.; Han, Y. K. Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery. J. Phys. Chem. C 2016, 120, 13384–13389.

[38]

Yao, K. P. C.; Okasinski, J. S.; Kalaga, K.; Shkrob, I. A.; Abraham, D. P. Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction. Energy Environ. Sci. 2019, 12, 656–665.

[39]

Yamagishi, Y.; Morita, H.; Nomura, Y.; Igaki, E. Visualizing lithiation of graphite composite anodes in all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry. J. Phys. Chem. Lett. 2021, 12, 4623–4627.

[40]

Ke, C. Z.; Shao, R. W.; Zhang, Y. G.; Sun, Z. F.; Qi, S.; Zhang, H. H.; Li, M.; Chen, Z. L.; Wang, Y. S.; Sa, B. S. et al. Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient lithium-ion storage. Adv. Funct. Mater. 2022, 32, 2205635.

[41]

Kim, D. W.; Jung, S. M.; Senthil, C.; Kim, S. S.; Ju, B. K.; Jung, H. Y. Understanding excess Li storage beyond LiC6 in reduced dimensional scale graphene. ACS Nano 2021, 15, 797–808.

Video
12274_2022_5090_MOESM1_ESM.avi
12274_2022_5090_MOESM2_ESM.avi
File
12274_2022_5090_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 August 2022
Revised: 18 September 2022
Accepted: 22 September 2022
Published: 05 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development (R&D) Program of China (No. 2021YFA1502800), the National Natural Science Foundation of China (Nos. 21825203, 22288201, and 91945302), Photon Science Center for Carbon Neutrality, LiaoNing Revitalization Talents Program (No. XLYC1902117), the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund (No. DNL201907), and the Youth Innovation Fund of Dalian Institute of Chemical Physics (No. DICP I202125). The authors are grateful for the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences.

Return