Journal Home > Volume 16 , Issue 6

Lithium metal is regarded as the most promising anode material for next generation high energy density lithium batteries due to its high theoretical capacity and lowest potential versus standard hydrogen electrode. However, lithium dendrite growth and huge volume change during cycling hinder its practical application. It is of great importance to design advanced Li metal anodes to solve these problems. Herein, we report a ZnO-coated Zn foam as the host matrix to pre-store lithium through thermal infusing, achieving a Zn@ZnO foam supported Li composite electrode (LZO). Needlelike ZnO nanofibers grown on the Zn foam greatly increase the surface area and enhance the lithiophilicity of the Zn foam. In situ formed synaptic LiZn layer after lithium infusion can disperse local current density and lower Li diffusion barrier effectively, leading to homogeneous Li deposition behavior, thus suppressing dendrite formation. The porous Zn foam skeleton can accommodate volume variation of the electrode during long-term cycling. Benefiting from these merits, the LZO anode exhibits much better cycle stability and rate capability in both symmetrical and full cells with low voltage hysteresis than the bare Li anode. This work opens a new opportunity in designing high performance composite Li anode for lithium-metal batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ formed synaptic Zn@LiZn host derived from ZnO nanofiber decorated Zn foam for dendrite-free lithium metal anode

Show Author's information Jian Bao1Hai-Juan Pei2Xin-Yang Yue3Xun-Lu Li1Cui Ma1Rui-Jie Luo1Chong-Yu Du1Yong-Ning Zhou1( )
Department of Materials Science, Fudan University, Shanghai 200433, China
State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Lithium metal is regarded as the most promising anode material for next generation high energy density lithium batteries due to its high theoretical capacity and lowest potential versus standard hydrogen electrode. However, lithium dendrite growth and huge volume change during cycling hinder its practical application. It is of great importance to design advanced Li metal anodes to solve these problems. Herein, we report a ZnO-coated Zn foam as the host matrix to pre-store lithium through thermal infusing, achieving a Zn@ZnO foam supported Li composite electrode (LZO). Needlelike ZnO nanofibers grown on the Zn foam greatly increase the surface area and enhance the lithiophilicity of the Zn foam. In situ formed synaptic LiZn layer after lithium infusion can disperse local current density and lower Li diffusion barrier effectively, leading to homogeneous Li deposition behavior, thus suppressing dendrite formation. The porous Zn foam skeleton can accommodate volume variation of the electrode during long-term cycling. Benefiting from these merits, the LZO anode exhibits much better cycle stability and rate capability in both symmetrical and full cells with low voltage hysteresis than the bare Li anode. This work opens a new opportunity in designing high performance composite Li anode for lithium-metal batteries.

Keywords: Li metal, anode, lithium batteries, thermal infusion, LiZn alloy

References(36)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.

[3]

He, P.; Zhang, T.; Jiang, J.; Zhou, H. S. Lithium-air batteries with hybrid electrolytes. J. Phys. Chem. Lett. 2016, 7, 1267–1280.

[4]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[5]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[6]

Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002, 148, 405–416.

[7]

Tao, R.; Bi, X. X.; Li, S.; Yao, Y.; Wu, F.; Wang, Q.; Zhang, C. Z.; Lu, J. Kinetics tuning the electrochemistry of lithium dendrites formation in lithium batteries through electrolytes. ACS Appl. Mater. Interfaces 2017, 9, 7003–7008.

[8]

Chen, R. J.; Qu, W. J.; Guo, X.; Li, L.; Wu, F. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487–516.

[9]

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

[10]

Shi, L.; Xu, A.; Zhao, T. S. First-principles investigations of the working mechanism of 2D h-BN as an interfacial layer for the anode of lithium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 1987–1994.

[11]

Zhang, J. F.; Su, Y. P.; Zhang, Y. G. Recent advances in research on anodes for safe and efficient lithium-metal batteries. Nanoscale 2020, 12, 15528–15559.

[12]

Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G. Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 2017, 4, 1600445.

[13]

Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

[14]

Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

[15]

Deng, W.; Zhu, W. H.; Zhou, X. F.; Liu, Z. P. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Mater. 2018, 15, 266–273.

[16]

Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Zhang, Z. Q.; Wu, X. J.; Yang, X. Q.; Zhou, Y. N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 335–344.

[17]

Qiu, H. L.; Tang, T. Y.; Asif, M.; Huang, X. X.; Hou, Y. L. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Adv. Funct. Mater. 2019, 29, 1808468.

[18]

Chen, C.; Yang, Y. F.; Shao, H. X. Enhancement of the lithium cycling capability using Li-Zn alloy substrate for lithium metal batteries. Electrochim. Acta 2014, 137, 476–483.

[19]

Liang, Y; Cao, S; Wei, Q. L.; Zeng, R. S.; Zhao, J. L.; Li, H. Z.; Yu, W. W.; Zou, B. S. Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 2021, 13, 196.

[20]

Wang, G.; Xiong, X. H.; Zou, P. J.; Fu, X. X.; Lin, Z. H.; Li, Y. P.; Liu, Y. Z.; Yang, C. H.; Liu, M. L. Lithiated zinc oxide nanorod arrays on copper current collectors for robust Li metal anodes. Chem. Eng. J. 2019, 378, 122243.

[21]

Chi, S. S.; Wang, Q. R.; Han, B.; Luo, C.; Jiang, Y. D.; Wang, J.; Wang, C. Y.; Yu, Y.; Deng, Y. H. Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 2020, 20, 2724–2732.

[22]

Ye, Y.; Liu, Y. T.; Wu, J. L.; Yang, Y. F. Lithiophilic Li-Zn alloy modified 3D Cu foam for dendrite-free lithium metal anode. J. Power Sources 2020, 472, 228520.

[23]

Yue, X. Y.; Bao, J.; Yang, S. Y.; Luo, R. J.; Wang, Q. C.; Wu, X. J.; Shadike, Z.; Yang, X. Q.; Zhou, Y. N. Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode. Nano Energy 2020, 71, 104614.

[24]

Liu, T. C.; Chen, S. Q.; Sun, W. W.; Lv, L. P.; Du, F. H.; Liu, H.; Wang, Y. Lithiophilic vertical cactus-like framework derived from Cu/Zn-based coordination polymer through in situ chemical etching for stable lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2008514.

[25]

Sharma, Y.; Sharma, N.; Subbarao, G.; Chowdari, B. Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ion. 2008, 179, 587–597.

[26]

Zhai, N. S.; Li, M. W.; Wang, W. L.; Zhang, D. L.; Xu, D. G. The application of the EIS in Li-ion batteries measurement. J. Phys. Conf. Ser. 2006, 48, 1157–1161.

[27]

Wang, S. H.; Yue, J. P.; Dong, W.; Zuo, T. T.; Li, J. Y.; Liu, X. L.; Zhang, X. D.; Liu, L.; Shi, J. L.; Yin, Y. X. et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 2019, 10, 4930.

[28]

Wang, J. Y.; Wang, H. S.; Xie, J.; Yang, A. K.; Pei, A.; Wu, C. L.; Shi, F. F.; Liu, Y. Y.; Lin, D. C.; Gong, Y. J. et al. Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 2018, 14, 345–350.

[29]

Barton, J. L.; Bockris, J. O. The electrolytic growth of dendrites from ionic solutions. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 1962, 268, 485–505.

[30]

Liu, S. F.; Xia, X. H.; Deng, S. J.; Xie, D.; Yao, Z. J.; Zhang, L. Y.; Zhang, S. Z.; Wang, X. L.; Tu, J. P. In situ solid electrolyte interphase from spray quenching on molten Li: A new way to construct high-performance lithium-metal anodes. Adv. Mater. 2019, 31, 1806470.

[31]

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

[32]

Ding, F.; Xu, W.; Chen, X. L.; Zhang, J.; Engelhard, M. H.; Zhang, Y. H.; Johnson, B. R.; Crum, J. V.; Blake, T. A.; Liu, X. et al. Effects of carbonate solvents and lithium salts on morphology and Coulombic efficiency of lithium electrode. J. Electrochem. Soc. 2013, 160, A1894–A1901.

[33]

Chang, S. Z.; Jin, X.; He, Q. Y.; Liu, T. C.; Fang, J. B.; Shen, Z. H.; Li, Z. H.; Zhang, S.; Dahbi, M.; Alami, J. et al. In situ formation of polycyclic aromatic hydrocarbons as an artificial hybrid layer for lithium metal anodes. Nano Lett. 2022, 22, 263–270.

[34]

Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

[35]

Shrestha, N. K.; Hahn, R.; Lee, K.; Tighineanu, A.; Schmuki, P. Electrochemically assisted self-assembling of ZnF2-ZnO nanospheres: Formation of hierarchical thin porous films. ECS Electrochem. Lett. 2013, 3, E1–E3.

[36]

Contarini, S.; Rabalais, J. W. Ion bombardment-induced decomposition of Li and Ba sulfates and carbonates studied by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1985, 35, 191–201.

Video
12274_2022_5089_MOESM2_ESM.mp4
12274_2022_5089_MOESM3_ESM.mp4
File
5089_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 August 2022
Revised: 13 September 2022
Accepted: 22 September 2022
Published: 01 November 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 52071085) and Shanghai Aerospace Science and Technology Innovation Fund (No. SAST2020-102). The authors thank beamline BL02U02 at Shanghai Synchrotron Radiation Facility (SSRF) for XRD measurements.

Return