Journal Home > Volume 16 , Issue 4

The unipolar photocurrent in conventional photodiodes (PDs) based on photovoltaic effect limits the output modes and potential versatility of these devices in photodetection. Bipolar photodiodes with photocurrent switching are emerging as a promising solution for obtaining photoelectric devices with unique and attractive functions, such as optical logic operation. Here, we design an all-solid-state chip-scale ultraviolet (UV) PD based on a hybrid GaN heterojunction with engineered bipolar polarized electric field. By introducing the polarization-induced photocurrent switching effect, the photocurrent direction can be switched in response to the wavelength of incident light at 0 V bias. In particular, the photocurrent direction exhibits negative when the irradiation wavelength is less than 315 nm, but positive when the wavelength is longer than 315 nm. The device shows a responsivity of up to −6.7 mA/W at 300 nm and 5.3 mA/W at 340 nm, respectively. In particular, three special logic gates in response to different dual UV light inputs are demonstrated via a single bipolar PD, which may be beneficial for future multifunctional UV photonic integrated devices and systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polarization-induced photocurrent switching effect in heterojunction photodiodes

Show Author's information Dingbo Chen1Yu-Chang Chen1Guang Zeng1Yu-Chun Li1Xiao-Xi Li1Dong Li2Chao Shen2( )Nan Chi2Boon S. Ooi3David Wei Zhang1Hong-Liang Lu1 ( )
State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
Key Laboratory for Information Science of Electromagnetic Waves, Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

Abstract

The unipolar photocurrent in conventional photodiodes (PDs) based on photovoltaic effect limits the output modes and potential versatility of these devices in photodetection. Bipolar photodiodes with photocurrent switching are emerging as a promising solution for obtaining photoelectric devices with unique and attractive functions, such as optical logic operation. Here, we design an all-solid-state chip-scale ultraviolet (UV) PD based on a hybrid GaN heterojunction with engineered bipolar polarized electric field. By introducing the polarization-induced photocurrent switching effect, the photocurrent direction can be switched in response to the wavelength of incident light at 0 V bias. In particular, the photocurrent direction exhibits negative when the irradiation wavelength is less than 315 nm, but positive when the wavelength is longer than 315 nm. The device shows a responsivity of up to −6.7 mA/W at 300 nm and 5.3 mA/W at 340 nm, respectively. In particular, three special logic gates in response to different dual UV light inputs are demonstrated via a single bipolar PD, which may be beneficial for future multifunctional UV photonic integrated devices and systems.

Keywords: GaN heterostructure, ultraviolet (UV) photodiodes, bipolar photocurrent, optical logic device

References(43)

[1]

Bao, C. X.; Xu, W. D.; Yang, J.; Bai, S.; Teng, P. P.; Yang, Y.; Wang, J. P.; Zhao, N.; Zhang, W. J.; Huang, W. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 2020, 3, 156–164.

[2]

Kang, C. H.; Dursun, I.; Liu, G. Y.; Sinatra, L.; Sun, X. B.; Kong, M. W.; Pan, J.; Maity, P.; Ooi, E. N.; Ng, T. K. et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light:Sci. Appl. 2019, 8, 94.

[3]

Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896.

[4]

Mauthe, S.; Baumgartner, Y.; Sousa, M.; Ding, Q.; Rossell, M. D.; Schenk, A.; Czornomaz, L.; Moselund, K. E. High-speed III-V nanowire photodetector monolithically integrated on Si. Nat. Commun. 2020, 11, 4565.

[5]

Ahmed, T.; Kuriakose, S.; Abbas, S.; Spencer, M. J. S.; Rahman, A.; Tahir, M.; Lu, Y. R.; Sonar, P.; Bansal, V.; Bhaskaran, M. et al. Multifunctional optoelectronics via harnessing defects in layered black phosphorus. Adv. Funct. Mater. 2019, 29, 1901991.

[6]

Han, J. Y.; He, M. Y.; Yang, M.; Han, Q.; Wang, F.; Zhong, F.; Xu, M. J.; Li, Q.; Zhu, H.; Shan, C. X. et al. Light-modulated vertical heterojunction phototransistors with distinct logical photocurrents. Light:Sci. Appl. 2020, 9, 167.

[7]

Pilarczyk, K.; Wlaźlak, E.; Przyczyna, D.; Blachecki, A.; Podborska, A.; Anathasiou, V.; Konkoli, Z.; Szaciłowski, K. Molecules, semiconductors, light and information: Towards future sensing and computing paradigms. Coord. Chem. Rev. 2018, 365, 23–40.

[8]

Gawęda, S.; Podborska, A.; Macyka, W.; Szaciłowski, K. Nanoscale optoelectronic switches and logic devices. Nanoscale 2009, 1, 299–316.

[9]

Bu, Y. C.; Xu, J. P.; Li, K.; Shi, S. B.; Chen, J.; Li, M. H.; Zhang, Q. Y.; Yang, P. C.; Xu, J. H.; Zhang, X. S. et al. Tunable photocurrent switching behavior of a ZnO/Cu2O heterojunction photodetector to realize bipolar binary photoresponse. J. Mater. Chem. C, 2021, 9, 6885–6889.

[10]

Podborska, A.; Suchecki, M.; Mech, K.; Marzec, M.; Pilarczyk, K.; Szaciłowski, K. Light intensity-induced photocurrent switching effect. Nat. Commun. 2020, 11, 854.

[11]

Kim, W.; Kim, H.; Yoo, T. J.; Lee, J. Y.; Jo, J Y.; Lee, B. H.; Sasikala, A. A.; Jung, G. Y.; Pak, Y. Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector. Nat. Commun. 2022, 13, 720.

[12]

Ouyang, B. S.; Wang, Y. H.; Zhang, R. Y.; Olin, H.; Yang, Y. Dual-polarity output response-based photoelectric devices. Cell Rep. Phys. Sci. 2021, 2, 100418.

[13]

Yasutomi, S.; Morita, T.; Imanishi, Y.; Kimura, S. A molecular photodiode system that can switch photocurrent direction. Science 2004, 304, 1944–1947.

[14]

Ikuno, T.; Hasegawa, M. Wavelength-dependent switching of photocurrent polarity in a semiconductor film with bifacial band bendings. Appl. Phys. Express 2016, 9, 062201.

[15]

Ouyang, B. S.; Zhang, K. W.; Yang, Y. Photocurrent polarity controlled by light wavelength in self-powered ZnO nanowires/SnS photodetector system. iScience 2018, 1, 16–23.

[16]

Singh, D. K.; Pant, R. K.; Nanda, K. K.; Krupanidhi, S. B. Differentiation of ultraviolet/visible photons from near infrared photons by MoS2/GaN/Si-based photodetector. Appl. Phys. Lett. 2021, 119, 121102.

[17]

Ouyang, B. S.; Zhao, H. Q.; Wang, Z. L.; Yang, Y. Dual-polarity response in self-powered ZnO NWs/Sb2Se3 film heterojunction photodetector array for optical communication. Nano Energy 2020, 68, 104312.

[18]

Ryzhkov, N. V.; Yurova, V. Y.; Ulasevich, S. A.; Skorb, E. V. Photoelectrochemical photocurrent switching effect on a pristine anodized Ti/TiO2 system as a platform for chemical logic devices. RSC Adv. 2020, 10, 12355–12359.

[19]

Bourée, W. S.; Prévot, M. S.; Jeanbourquin, X. A.; Guijarro, N.; Johnson, M.; Le Formal, F.; Sivula, K. Robust hierarchically structured biphasic ambipolar oxide photoelectrodes for light-driven chemical regulation and switchable logic applications. Adv. Mater. 2016, 28, 9308–9312.

[20]

He, C. R.; Guo, D. Y.; Chen, K.; Wang, S. L.; Shen, J. Q.; Zhao, N.; Liu, A. P.; Zheng, Y. Y.; Li, P. G.; Wu, Z. P. et al. α-Ga2O3 nanorod array-Cu2O microsphere p-n junctions for self-powered spectrum-distinguishable photodetectors. ACS Appl. Nano Mater. 2019, 2, 4095–4103.

[21]

Wang, D. H.; Liu, X.; Kang, Y.; Wang, X. N.; Wu, Y. P.; Fang, S.; Yu, H. B.; Memon, M. H.; Zhang, H. C.; Hu, W. et al. Bidirectional photocurrent in p–n heterojunction nanowires. Nat. Electron. 2021, 4, 645–652.

[22]

Limpert, S.; Burke, A.; Chen, I. J.; Anttu, N.; Lehmann, S.; Fahlvik, S.; Bremner, S.; Conibeer, G.; Thelander, C.; Pistol, M. E. et al. Bipolar photothermoelectric effect across energy filters in single nanowires. Nano Lett. 2017, 17, 4055–4060.

[23]

Chen, J.; Xu, J. P.; Shi, S. B.; Cao, R.; Liu, D.; Bu, Y. C.; Yang, P. C.; Xu, J. H.; Zhang, X. S.; Li, L. Novel self-powered photodetector with binary photoswitching based on SnSx/TiO2 heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 23145–23154.

[24]

Hong, Q. S.; Cao, Y.; Xu, J.; Lu, H. M.; He, J. H.; Sun, J. L. Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array. ACS Appl. Mater. Interfaces 2014, 6, 20887–20894.

[25]

Chen, H. J.; Liu, G.; Wang, L. Z. Switched photocurrent direction in Au/TiO2 bilayer thin films. Sci. Rep. 2015, 5, 10852.

[26]

Arora, K.; Singh, D. P.; Fischer, P.; Kumar, M. Spectrally selective and highly sensitive UV photodetection with UV-A,C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film. Adv. Opt. Mater. 2020, 8, 2000212.

[27]

Hoang, C. V.; Hayashi, K.; Ito, Y.; Gorai, N.; Allison, G.; Shi, X.; Sun, Q.; Cheng, Z. Z.; Ueno, K.; Goda, K. et al. Interplay of hot electrons from localized and propagating plasmons. Nat. Commun. 2017, 8, 771.

[28]

Nakamura, K.; Oshikiri, T.; Ueno, K.; Katase, T.; Ohta, H.; Misawa, H. Plasmon-assisted polarity switching of a photoelectric conversion device by UV and visible light irradiation. J. Phys. Chem. C 2018, 122, 14064–14071.

[29]

Hu, T. Z.; Wu, J. Y.; Han, D. Y.; Ni, Y. X.; Dong, W.; Chen, Z.; Wang, Z. L. Dual plasmonic nanostructures for switching polarity of hot electron-induced photocurrent. Nanoscale 2020, 12, 14668–14675.

[30]

Gao, L.; Chen, C.; Zeng, K.; Ge, C.; Yang, D.; Song, H. S.; Tang, J. Broadband, sensitive and spectrally distinctive SnS2 nanosheet/PbS colloidal quantum dot hybrid photodetector. Light: Sci. Appl. 2016, 5, e16126.

[31]

Brunner, D.; Angerer, H.; Bustarret, E.; Freudenberg, F.; Höpler, R.; Dimitrov, R.; Ambacher, O.; Stutzmann, M. Optical constants of epitaxial AlGaN films and their temperature dependence. J. Appl. Phys. 1997, 82, 5090–5096.

[32]

Lee, W. C.; Hu, C. M. Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling. IEEE Trans. Electron Device. 2001, 48, 1366–1373.

[33]

Lin, C. H.; Liu, C. W. Metal–insulator–semiconductor photodetectors. Sensors 2010, 10, 8797–8826.

[34]

Baines, Y.; Buckley, J.; Biscarrat, J.; Garnier, G.; Charles, M.; Vandendaele, W.; Gillot, C.; Plissonnier, M. Coherent tunneling in an AlGaN/AlN/GaN heterojunction captured through an analogy with a MOS contact. Sci. Rep. 2017, 7, 8177.

[35]

Wang, M. J.; Shen, B.; Wang, Y.; Huang, S.; Xu, F. J.; Xu, J.; Qin, Z. X.; Yang, Z. J.; Zhang, G. Y. Tunneling induced electron transfer in SiNx/AlGaN/GaN based metal–insulator–semiconductor structures. Phys. Lett. A 2007, 371, 249–253.

[36]

Lv, Y. J.; Lin, Z. J.; Corrigan, T. D.; Zhao, J. Z.; Cao, Z. F.; Meng, L. G.; Luan, C. B.; Wang, Z. G.; Chen, H. Extraction of AlGaN/GaN heterostructure Schottky diode barrier heights from forward current-voltage characteristics. J. Appl. Phys. 2011, 109, 074512.

[37]

Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J. R.; Weimann, N. G.; Chu, K.; Murphy, M.; Sierakowski, A. J.; Schaff, W. J.; Eastman, L. F. et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 2000, 87, 334–344.

[38]

Ambacher, O.; Majewski, J.; Miskys, C.; Link, A.; Hermann, M.; Eickhoff, M.; Stutzmann, M.; Bernardini, F.; Fiorentini, V.; Tilak, V. et al. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. :Condens. Matter 2002, 14, 3399–3434.

[39]

Donnelly, J. P.; Milnes, A. G. The photovoltaic characteristics of p–n Ge-Si and Ge-GaAs heterojunctions. Int. J. Electron. 1966, 20, 295–310.

[40]

Zhang, H. C.; Liang, F. Z.; Song, K.; Xing, C.; Wang, D. H.; Yu, H. B.; Huang, C.; Sun, Y.; Yang, L.; Zhao, X. L. et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W. Appl. Phys. Lett. 2021, 118, 242105.

[41]

Bogaerts, W.; Pérez, D.; Capmany, J.; Miller, D. A. B.; Poon, J.; Englund, D.; Morichetti, F.; Melloni, A. Programmable photonic circuits. Nature 2020, 586, 207–216.

[42]

Kong, D. M.; Liu, Y.; Ren, Z. Q.; Jung, Y.; Kim, C.; Chen, Y.; Wheeler, N. V.; Petrovich, M. N.; Pu, M. H.; Yvind, K. et al. Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nat. Commun. 2022, 13, 4139.

[43]

Marega, G. M.; Zhao, Y. F.; Avsar, A.; Wang, Z. Y.; Tripathi, M.; Radenovic, A.; Kis, A. Logic-in-memory based on an atomically thin semiconductor. Nature 2020, 587, 72–77.

File
12274_2022_5086_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 August 2022
Revised: 18 September 2022
Accepted: 20 September 2022
Published: 14 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62027818, 51861135105, 61874034, and 11974320), the National Key Research and Development Program of China (No. 2021YFB3202500), and International Science and Technology Cooperation Program of Shanghai Science and Technology Innovation Action Plan (No. 21520713300).

Return