Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Mixed-dimensional van der Waals (vdW) heterostructures based on two-dimensional transition metal dichalcogenides and three-dimensional semiconductors have led to a new era in next-generation optoelectronics due to the high-quality interfaces and energy band complementation, especially in broadband photodetectors which can be used for all-weather navigation, object identification, etc. However, the reported photodetectors conventionally operated in photodiode mode with low responsivity and a narrow response spectrum. In this study, we report a p-WSe2/n-Ge vdW heterojunction phototransistor with a Schottky barrier collector on n-Ge for broadband photodetection. Large hole/electron injection ratio from p-WSe2/n-Ge heterojunction under forward bias due to their large bandgap offset renders the high photocurrent gain, while the Ge Schottky barrier limits the dark current. The responsivities of the phototransistor at 1.0 V emitter-collector bias are 55, 95, and 120 A·W−1 at 405, 1,310, and 1,550 nm, respectively, which is superior to that of the corresponding p-WSe2/n-Ge photodiodes. The phototransistor shows a high photocurrent gain of 80, a specific detectivity of 1011 Jones, as well as a fast response time of 290 μs at 1,550 nm. The results suggest that the novel phototransistor being implemented with complementary metal-oxide-semiconductor processing is an ideal strategy for high-performance broadband photodetection.
Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.
Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126.
Li, C. L.; Cao, Q.; Wang, F. Z.; Xiao, Y. Q.; Li, Y. B.; Delaunay, J. J.; Zhu, H. W. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 2018, 47, 4981–5037.
Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.
Xia, J.; Yan, J. X.; Shen, Z. X. Transition metal dichalcogenides: Structural, optical and electronic property tuning via thickness and stacking. FlatChem 2017, 4, 1–19.
Gong, C.; Zhang, H. J.; Wang, W. H.; Colombo, L.; Wallace, R. M.; Cho, K. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 2013, 103, 053513.
Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.
Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 2016, 94, 035125.
Zhang, H. B.; Zhang, X. J.; Liu, C.; Lee, S. T.; Jie, J. S. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano 2016, 10, 5113–5122.
Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.
Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.
Krishnamoorthy, S.; Lee II, E. W.; Lee, C. H.; Zhang, Y. W.; McCulloch, W. D.; Johnson, J. M.; Hwang, J.; Wu, Y. Y.; Rajan, S. High current density 2D/3D MoS2/GaN Esaki tunnel diodes. Appl. Phys. Lett. 2016, 109, 183505.
Padma, R.; Lee, G.; Kang, J. S.; Jun, S. C. Structural, chemical, and electrical parameters of Au/MoS2/n-GaAs metal/2D/3D hybrid heterojunction. J. Colloid Interface Sci. 2019, 550, 48–56.
Deng, J. N.; Zong, L. Y.; Zhu, M. S.; Liao, F. Y.; Xie, Y. Y.; Guo, Z. X.; Liu, J.; Lu, B. R.; Wang, J. L.; Hu, W. D. et al. MoS2/HfO2/silicon-on-insulator dual-photogating transistor with ambipolar photoresponsivity for high-resolution light wavelength detection. Adv. Funct. Mater. 2019, 29, 1906242.
Chen, W. J.; Liang, R. R.; Zhang, S. Q.; Liu, Y.; Cheng, W. J.; Sun, C. C.; Xu, J. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res. 2020, 13, 127–132.
Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.
Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.
Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572.
Patel, M.; Kim, H. S.; Kim, J. Wafer-scale production of vertical SnS multilayers for high-performing photoelectric devices. Nanoscale 2017, 9, 15804–15812.
Dhyani, V.; Das, M.; Uddin, W.; Muduli, P. K.; Das, S. Self-powered room temperature broadband infrared photodetector based on MoSe2/germanium heterojunction with 35 A/W responsivity at 1550 nm. Appl. Phys. Lett. 2019, 114, 121101.
Lee, C. H.; Park, Y.; Youn, S.; Yeom, M. J.; Kum, H. S.; Chang, J.; Heo, J.; Yoo, G. Design of p-WSe2/n-Ge heterojunctions for high-speed broadband photodetectors. Adv. Funct. Mater. 2022, 32, 2107992.
Ahn, D.; Hong, C. Y.; Liu, J. F.; Giziewicz, W.; Beals, M.; Kimerling, L. C.; Michel, J.; Chen, J.; Kärtner, F. X. High performance, waveguide integrated Ge photodetectors. Opt. Express 2007, 15, 3916–3921.
Chaisakul, P.; Marris-Morini, D.; Frigerio, J.; Chrastina, D.; Rouifed, M. S.; Cecchi, S.; Crozat, P.; Isella, G.; Vivien, L. Integrated germanium optical interconnects on silicon substrates. Nat. Photon. 2014, 8, 482–488.
Qian, Q. K.; Zhang, Z. F.; Chen, K. J. Layer-dependent second-order Raman intensity of MoS2 and WSe2: Influence of intervalley scattering. Phys. Rev. B 2018, 97, 165409.
Zanatta, A. R. Temperature-dependent Raman scattering of the Ge + GeOx system and its potential as an optical thermometer. Results Phys. 2020, 19, 103500.
Mao, Y. C.; Xu, P. P.; Wu, Q.; Xiong, J.; Peng, R. M.; Huang, W.; Chen, S. Y.; Wu, Z. Y.; Li, C. Self-powered high-detectivity lateral MoS2 Schottky photodetectors for near-infrared operation. Adv. Electron. Mater. 2021, 7, 2001138.
Kim, H.; Kim, S. H.; Jung, C. Y.; Cho, Y.; Kim, D. W. Analysis of temperature-dependent current transport mechanism in Cu/n-type Ge Schottky junction. Vacuum 2015, 121, 125–128.
Luo, X.; Nishimura, T.; Yajima, T.; Toriumi, A. Understanding of Fermi level pinning at metal/germanium interface based on semiconductor structure. Appl. Phys. Express 2020, 13, 031003.
Wang, Y. Y.; Yang, R. X.; Quhe, R.; Zhong, H. X.; Cong, L. X.; Ye, M.; Ni, Z. Y.; Song, Z. G.; Yang, J. B.; Shi, J. J. et al. Does p-type ohmic contact exist in WSe2-metal interfaces? Nanoscale 2016, 8, 1179–1191.
Zhang, L.; Zhang, Y. D.; Sun, X. T.; Jia, K. P.; Zhang, Q. Z.; Wu, Z. H.; Yin, H. X. High-performance multilayer WSe2 p-type field effect transistors with Pd contacts for circuit applications. J. Mater. Sci. Mater. Electron. 2021, 32, 17427–17435.
Yu, L. L.; Zubair, A.; Santos, E. J. G.; Zhang, X.; Lin, Y. X.; Zhang, Y. H.; Palacios, T. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 2015, 15, 4928–4934.
Mostefa, Z. K.; Bouchareb, M. L.; Chaabi, A. Impact of base bias current and incident optical power on the InP/InGaAs heterojunction phototransistor performances. Opt. Mater. 2022, 123, 111888.
Zhu, M.; Chen, J.; Xu, J. T.; Li, X. Y. Optimization of GaN/InGaN heterojunction phototransistor. IEEE Photon. Technol. Lett. 2017, 29, 373–376.
Doan, M. H.; Jin, Y.; Adhikari, S.; Lee, S.; Zhao, J.; Lim, S. C.; Lee, Y. H. Charge transport in MoS2/WSe2 van der Waals heterostructure with tunable inversion layer. ACS Nano 2017, 11, 3832–3840.
Iyer, S. S.; Patton, G. L.; Stork, J. M. C.; Meyerson, B. S.; Harame, D. L. Heterojunction bipolar transistors using Si-Ge alloys. IEEE Trans. Electron Devices 1989, 36, 2043–2064.
Leu, L. Y.; Gardner, J. T.; Forrest, S. R. A high-gain, high-bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications. J. Appl. Phys. 1991, 69, 1052–1062.
Neugroschel, A. Emitter injection efficiency in heterojunction bipolar transistors. Solid-State Electron. 1987, 30, 1171–1173.
Kroemer, H. Heterostructure bipolar transistors and integrated circuits. Proc. IEEE 1982, 70, 13–25.
Kroemer, H. Theory of a wide-gap emitter for transistors. Proc. IRE 1957, 45, 1535–1537.
Hu, W.; Cong, H.; Huang, W.; Huang, Y.; Chen, L. J.; Pan, A. L.; Xue, C. L. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl. 2019, 8, 106.
Lee, M.; Lee, W.; Choi, S.; Jo, J. W.; Kim, J.; Park, S. K.; Kim, Y. H. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 2017, 29, 1700951.
Lei, S. D.; Wen, F. F.; Li, B.; Wang, Q. Z.; Huang, Y. H.; Gong, Y. J.; He, Y. M.; Dong, P.; Bellah, J.; George, A. et al. Optoelectronic memory using two-dimensional materials. Nano Lett. 2015, 15, 259–265.
Hekmatikia, A.; Abdi, Y. Graphene-silicon-based high-sensitivity and broadband phototransistor. IEEE Electron Device Lett. 2018, 39, 216–219.
Hwang, A.; Park, M.; Park, Y.; Shim, Y.; Youn, S.; Lee, C. H.; Jeong, H. B.; Jeong, H. Y.; Chang, J.; Lee, K. et al. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure. Sci. Adv. 2021, 7, eabj2521.
Shin, G. H.; Park, C.; Lee, K. J.; Jin, H. J.; Choi, S. Y. Ultrasensitive phototransistor based on WSe2-MoS2 van der Waals heterojunction. Nano Lett. 2020, 20, 5741–5748.
Tai, J. L.; Wang, B.; Hu, D. S.; Xu, P.; Zhang, Z. B. Ultraviolet–visible–near-infrared photodetector based on exfoliated tungsten selenide. Mater. Lett. 2021, 287, 129247.
Zhao, Y. M.; Huang, Z. W.; Peng, R. M.; Xu, P. P.; Wu, Q.; Mao, Y. C.; Yu, C. Y.; Huang, W.; Wang, J. Y.; Chen, S. Y. et al. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Phys. Sin. 2021, 70, 178506.