Journal Home > Volume 16 , Issue 4

In one-dimensional semiconductors such as conjugated polymers and semiconducting single-walled carbon nanotubes (s-SWCNTs), injected charge carriers (electrons or holes) can have profound impacts on both electronic conductivity and optical spectra, even at low carrier densities. Understanding charge-related spectral features is a key fundamental challenge with important technological implications. Here, we employ a systematic suite of experimental and theoretical tools to understand the mid-infrared charge signatures of heavily p-type doped polymer-wrapped s-SWCNTs. Across a broad range of nanotube diameters, we find that hole charge carriers induce strong Fano anti-resonances in mid-infrared transmission spectra that correspond to defect-related (D-band) and in-plane tangential (G-band) Raman-active vibrational modes, along with anti-resonances arising from infrared (IR)-active polymer and SWCNT modes. We employ 13C isotope-labeled s-SWCNTs and a removable wrapping polymer to clarify the relative intensities, energies, and sources of all observed anti-resonances. Simulations performed with the “amplitude mode model” are used to quantitatively reproduce Raman spectra and also help to explain the outsized intensity of the D-band anti-resonance, relative to the G-band, observed for both moderately and degenerately doped s-SWCNTs. The results provide a framework for future studies of ground- and excited-state charge carriers in s-SWCNTs and a variety of low-dimensional materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Amplitude-mode spectroscopy of chemically injected and photogenerated charge carriers in semiconducting single-walled carbon nanotubes

Show Author's information Shai R. Vardeny1Alan Phillips2,3Kira A. Thurman2Z. Valy Vardeny4Jeffrey L. Blackburn2( )
Division of Electrical, Electronic, and Infocommunications Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
Materials, Chemistry, and Computation Science Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA
Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
Department of Physics & Astronomy, University of Utah, Salt Lake City, UT 84112, USA

Abstract

In one-dimensional semiconductors such as conjugated polymers and semiconducting single-walled carbon nanotubes (s-SWCNTs), injected charge carriers (electrons or holes) can have profound impacts on both electronic conductivity and optical spectra, even at low carrier densities. Understanding charge-related spectral features is a key fundamental challenge with important technological implications. Here, we employ a systematic suite of experimental and theoretical tools to understand the mid-infrared charge signatures of heavily p-type doped polymer-wrapped s-SWCNTs. Across a broad range of nanotube diameters, we find that hole charge carriers induce strong Fano anti-resonances in mid-infrared transmission spectra that correspond to defect-related (D-band) and in-plane tangential (G-band) Raman-active vibrational modes, along with anti-resonances arising from infrared (IR)-active polymer and SWCNT modes. We employ 13C isotope-labeled s-SWCNTs and a removable wrapping polymer to clarify the relative intensities, energies, and sources of all observed anti-resonances. Simulations performed with the “amplitude mode model” are used to quantitatively reproduce Raman spectra and also help to explain the outsized intensity of the D-band anti-resonance, relative to the G-band, observed for both moderately and degenerately doped s-SWCNTs. The results provide a framework for future studies of ground- and excited-state charge carriers in s-SWCNTs and a variety of low-dimensional materials.

Keywords: carbon nanotubes, doping, electron-phonon coupling, phonons, charge carriers

References(43)

[1]

Habisreutinger, S. N.; Blackburn, J. L. Carbon nanotubes in high-performance perovskite photovoltaics and other emerging optoelectronic applications. J. Appl. Phys. 2021, 129, 010903.

[2]

Massetti, M.; Jiao, F.; Ferguson, A. J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J. L.; Crispin, X.; Fabiano, S. Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 2021, 121, 12465–12547.

[3]

Peng, L. M.; Zhang, Z. Y.; Qiu, C. G. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505.

[4]

Hao, J.; Nanayakkara, S. U.; Tervo, E. J.; Blackburn, J. L.; Ferguson, A. J. High-performance carbon nanotube electronic ratchets. Energy Environ. Sci. 2021, 14, 5457–5468.

[5]

Zorn, N. F.; Zaumseil, J. Charge transport in semiconducting carbon nanotube networks. Appl. Phys. Rev. 2021, 8, 041318.

[6]
Blackburn, J. L.; Ferguson, A. J.; Reid, O. G. Chapter 14: Spectroscopy of ground- and excited-state charge carriers in single-wall carbon nanotubes. In Handbook of Carbon Nanomaterials; Weisman, R. B., Kono, J., Eds.; World Scientific Publishing Company: Hackensack, 2019; pp 237–296.
[7]

Eckstein, K. H.; Hirsch, F.; Martel, R.; Hertel, T. Infrared study of charge carrier confinement in doped (6,5) carbon nanotubes. J. Phys. Chem. C 2021, 125, 5700–5707.

[8]

Park, J.; Reid, O. G.; Blackburn, J. L.; Rumbles, G. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes. Nat. Commun. 2015, 6, 8809.

[9]

Burdanova, M. G.; Tsapenko, A. P.; Kharlamova, M. V.; Kauppinen, E. I.; Gorshunov, B. P.; Kono, J.; Lloyd-Hughes, J. A review of the terahertz conductivity and photoconductivity of carbon nanotubes and heteronanotubes. Adv. Opt. Mater. 2021, 9, 2101042.

[10]

Eckstein, K. H.; Oberndorfer, F.; Achsnich, M. M.; Schöppler, F.; Hertel, T. Quantifying doping levels in carbon nanotubes by optical spectroscopy. J. Phys. Chem. C 2019, 123, 30001–30006.

[11]
Hertel, T. Chapter 13: Optical spectroscopy of doped carbon nanotubes. In Handbook of Carbon Nanomaterials; Weisman, R. B. , Kono, J. , Eds; World Scientific: Hackensack, 2019; pp 191–236.
[12]

Mansour, A. E.; Lungwitz, D.; Schultz, T.; Arvind, M.; Valencia, A. M.; Cocchi, C.; Opitz, A.; Neher, D.; Koch, N. The optical signatures of molecular-doping induced polarons in poly(3-Hexylthiophene-2,5-diyl): Individual polymer chains versus aggregates. J. Mater. Chem. C 2020, 8, 2870–2879.

[13]

Spano, F. C. The spectral signatures of frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 2010, 43, 429–439.

[14]

Zaumseil, J. Semiconducting single-walled carbon nanotubes or very rigid conjugated polymers: A comparison. Adv. Electron. Mater. 2019, 5, 1800514.

[15]

Horovitz, B. Infrared activity of peierls systems and application to polyacetylene. Solid State Commun. 1982, 41, 729–734.

[16]

Vardeny, Z.; Ehrenfreund, E.; Brafman, O.; Horovitz, B. Resonant Raman scattering from amplitude modes in trans-(CH)x and -(CD)x. Phys. Rev. Lett. 1983, 51, 2326–2329.

[17]

Vardeny, Z. Photoinduced Ir-active vibrations in trans-(CD)x: A three-mode system. Phys. Rev. Lett. 1983, 51, 1221.

[18]

Vardeny, Z.; Orenstein, J.; Baker, G. L. Photoinduced infrared activity in polyacetylene. Phys. Rev. Lett. 1983, 50, 2032–2035.

[19]

Brafman, O.; Vardeny, Z.; Ehrenfreund, E. Isotope effect in resonant Raman scattering and induced IR spectra of trans-polyacetylene. Solid State Commun. 1985, 53, 615–619.

[20]

Vardeny, Z.; Ehrenfreund, E.; Brafman, O.; Horovitz, B. Classification of disorder and extrinsic order in polymers by resonant Raman scattering. Phys. Rev. Lett. 1985, 54, 75–78.

[21]

Horovitz, B.; Vardeny, Z.; Ehrenfreund, E.; Brafman, O. Raman scattering from charge-density waves and application to polyacetylene. J. Phys. C: Solid State Phys. 1986, 19, 7291–7305.

[22]

Ehrenfreund, E.; Vardeny, Z.; Brafman, O.; Horovitz, B. Amplitude and phase modes in trans-polyacetylene: Resonant Raman scattering and induced infrared activity. Phys. Rev. B 1987, 36, 1535–1553.

[23]

Ozaki, M.; Ehrenfreund, E.; Benner, R. E.; Barton, T. J.; Yoshino, K.; Vardeny, Z. V. Dispersion of resonant Raman scattering in π-conjugated polymers: Role of the even parity excitons. Phys. Rev. Lett. 1997, 79, 1762–1765.

[24]

Österbacka, R.; Jiang, X. M.; An, C. P.; Horovitz, B.; Vardeny, Z. V. Photoinduced quantum interference antiresonances in π-conjugated polymers. Phys. Rev. Lett. 2002, 88, 226401.

[25]

Baniya, S.; Vardeny, S. R.; Lafalce, E.; Peygambarian, N.; Vardeny, Z. V. Amplitude-mode spectroscopy of charge excitations in PTB7 π-conjugated donor-acceptor copolymer for photovoltaic applications. Phys. Rev. Appl. 2017, 7, 064031.

[26]

Lapointe, F.; Gaufrès, É.; Tremblay, I.; Tang, N. Y. W.; Martel, R.; Desjardins, P. Fano resonances in the midinfrared spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 2012, 109, 097402.

[27]

Lapointe, F.; Rousseau, B.; Aymong, V.; Nguyen, M.; Biron, M.; Gaufrès, E.; Choubak, S.; Han, Z.; Bouchiat, V.; Desjardins, P. et al. Antiresonances in the mid-infrared vibrational spectrum of functionalized graphene. J. Phys. Chem. C 2017, 121, 9053–9062.

[28]

Ferguson, A. J.; Reid, O. G.; Nanayakkara, S. U.; Ihly, R.; Blackburn, J. L. Efficiency of charge-transfer doping in organic semiconductors probed with quantitative microwave and direct-current conductance. J. Phys. Chem. Lett. 2018, 9, 6864–6870.

[29]

Hao, J.; Kim, Y. H.; Habisreutinger, S. N.; Harvey, S. P.; Miller, E. M.; Foradori, S. M.; Arnold, M. S.; Song, Z. N.; Yan, Y. F.; Luther, J. M. et al. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 2021, 7, eabf1959.

[30]

Matsunaga, R.; Matsuda, K.; Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett. 2011, 106, 037404.

[31]

Arias, D. H.; Sulas-Kern, D. B.; Hart, S. M.; Kang, H. S.; Hao, J.; Ihly, R.; Johnson, J. C.; Blackburn, J. L.; Ferguson, A. J. Effect of nanotube coupling on exciton transport in polymer-free monochiral semiconducting carbon nanotube networks. Nanoscale 2019, 11, 21196–21206.

[32]

Blackburn, J. L. Semiconducting single-walled carbon nanotubes in solar energy harvesting. ACS Energy Lett. 2017, 2, 1598–1613.

[33]

MacLeod, B. A.; Stanton, N. J.; Gould, I. E.; Wesenberg, D.; Ihly, R.; Owczarczyk, Z. R.; Hurst, K. E.; Fewox, C. S.; Folmar, C. N.; Hughes, K. H. et al. Large N- and P-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ. Sci. 2017, 10, 2168–2179.

[34]

Blackburn, J. L.; Kang, S. D.; Roos, M. J.; Norton-Baker, B.; Miller, E. M.; Ferguson, A. J. Intrinsic and extrinsically limited thermoelectric transport within semiconducting single-walled carbon nanotube networks. Adv. Electron. Mater. 2019, 5, 1800910.

[35]

Gregory, S. A.; Hanus, R.; Atassi, A.; Rinehart, J. M.; Wooding, J. P.; Menon, A. K.; Losego, M. D.; Snyder, G. J.; Yee, S. K. Quantifying charge carrier localization in chemically doped semiconducting polymers. Nat. Mater. 2021, 20, 1414–1421.

[36]

Norton-Baker, B.; Ihly, R.; Gould, I. E.; Avery, A. D.; Owczarczyk, Z. R.; Ferguson, A. J.; Blackburn, J. L. Polymer-free carbon nanotube thermoelectrics with improved charge carrier transport and power factor. ACS Energy Lett. 2016, 1, 1212–1220.

[37]

Engtrakul, C.; Davis, M. F.; Mistry, K.; Larsen, B. A.; Dillon, A. C.; Heben, M. J.; Blackburn, J. L. Solid-state 13C nmr assignment of carbon resonances on metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 9956–9957.

[38]

Zhou, J.; Dong, J. M. Infrared properties of single-walled carbon nanotubes calculated from first principles. J. Appl. Phys. 2010, 107, 024306.

[39]

Pekker, Á.; Botos, Á.; Rusznyák, Á.; Koltai, J.; Kürti, J.; Kamarás, K. Vibrational signatures in the infrared spectra of single- and double-walled carbon nanotubes and their diameter dependence. J. Phys. Chem. Lett. 2011, 2, 2079–2082.

[40]

Dobardžić, E.; Milošević, I.; Nikolić, B.; Vuković, T.; Damnjanović, M. Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations. Phys. Rev. B 2003, 68, 045408.

[41]

Avery, A. D.; Zhou, B. H.; Lee, J.; Lee, E. S.; Miller, E. M.; Ihly, R.; Wesenberg, D.; Mistry, K. S.; Guillot, S. L.; Zink, B. L. et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 2016, 1, 16033.

[42]

Kahmann, S.; Rios, J. M. S.; Zink, M.; Allard, S.; Scherf, U.; Dos Santos, M. C.; Brabec, C. J.; Loi, M. A. Excited-state interaction of semiconducting single-walled carbon nanotubes with their wrapping polymers. J. Phys. Chem. Lett. 2017, 8, 5666–5672.

[43]

Zólyomi, V.; Kürti, J.; Grüneis, A.; Kuzmany, H. Origin of the fine structure of the Raman D band in single-wall carbon nanotubes. Phys. Rev. Lett. 2003, 90, 157401.

File
12274_2022_5080_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2022
Revised: 13 September 2022
Accepted: 20 September 2022
Published: 18 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was authored by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Separation, doping, and spectroscopy of SWCNTs was supported by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. DOE. Fabrication and characterization of SWCNT-perovskite heterostructures and development and application of the amplitude mode model to SWCNT spectra was supported as part of the Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the Office of Science, Basic Energy Sciences within the US. DOE. S. R. V. and Z. V. V. acknowledge support for the amplitude mode model theoretical study from the DOE Office of Science, No. DE-SC0014579. S. R. V. was partially supported by the JSPS KAKENHI Number 20H00391, 21K18722.

Return