AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-oriented central-tumor delivery of legumain-cleavable vehicles governed by circulating monocyte/macrophage for precise tumor enrichment and immune activation

Fangying Yu1,§Xuwei Shang1,§Yun Zhu2Lijun Peng1Simin Chen1Tingting Meng1Hong Yuan1Fuqiang Hu1( )
College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

§ Fangying Yu and Xuwei Shang contributed equally to this work.

Show Author Information

Graphical Abstract

The study reported legumain-cleavable nanovesicles for precise tumor enrichment and immune activation, which reach tumor regions inaccessible for nanoparticles by hitchhiking circulating monocytes.

Abstract

Compressed blood and intratumoral lymphatic vessels induced by proliferated tumor cells and elevated interstitial fluid pressure produce regional hypoxic and necrotic region within tumors, which severely reduced the accessibility of immunogenic cell death (ICD) related drugs and immune-related cells. Herein, the strategy of self-oriented deep tumor delivery by circulating monocyte/macrophage was proposed. Briefly, CS-AI including an indoleamine 2,3-dioxygenase (IDO) inhibitor indoximod (IND) and hydrophilic chitosan (CSO) linked with alanine-alanine-asparagine (AAN) was prepared, which could be selectively cleaved by legumain overexpressed in macrophages and promote the collapse in structure. Then, CS-AI was modified with mannose on the surface and further encapsulated the ICD inducer doxorubicin (DOX) to obtain M-CS-AI/DOX. Upon intravenous injection, M-CS-AI/DOX was specially recognized and internalized by circulating monocyte in vivo. The formed drugs/monocyte tend to distribute in hypoxia/necrosis region guided by the homing signals released by tumor. Accumulated monocytes then further differentiated into macrophages, up-regulating the expression of legumain and promoting the sensitive-release of chemo-drug DOX, IND, and the mannose-modified CSO (M-CSO). The released IND would specifically regulate immunosuppressive tumor microenvironment, and synergistically inhibit tumor growth with immune activation elements, ICD-induced DOX, and the favorable adjuvant M-CSO. In summary, the self-oriented deep tumor delivery of legumain-cleavable nanovesicles through circulating monocyte makes it possible for reaching tumor regions inaccessible for nanoparticles and provides a novel insight for precise tumor enrichment and immune activation.

Electronic Supplementary Material

Download File(s)
12274_2022_5076_MOESM1_ESM.pdf (1 MB)

References

[1]

Chew, V.; Lee, Y. H.; Pan, L.; Nasir, N. J. M.; Lim, C. J.; Chua, C.; Lai, L. Y.; Hazirah, S. N.; Lim, T. K. H.; Goh, B. K. P. et al. Immune activation underlies a sustained clinical response to yttrium-90 radioembolisation in hepatocellular carcinoma. Gut 2019, 68, 335–346.

[2]

Ahmed, A.; Tait, S. W. G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020, 14, 2994–3006.

[3]

Wang, Z. Z.; Zhang, Y.; Liu, Z.; Dong, K.; Liu, C. Q.; Ran, X.; Pu, F.; Ju, E. G.; Ren, J. S.; Qu, X. G. A bifunctional nanomodulator for boosting CpG-mediated cancer immunotherapy. Nanoscale 2017, 9, 14236–14247.

[4]

Chan, T. A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S. A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56.

[5]

Deng, L. D.; Feng, Z. J.; Deng, H. Z.; Jiang, Y. J.; Song, K.; Shi, Y. L.; Liu, S. Q.; Zhang, J. H.; Bai, S. P.; Qin, Z. H. et al. Rational design of nanoparticles to overcome poor tumor penetration and hypoxia-induced chemotherapy resistance: Combination of optimizing size and self-inducing high level of reactive oxygen species. ACS Appl. Mater. Interfaces 2019, 11, 31743–31754.

[6]

Wirthl, B.; Kremheller, J.; Schrefler, B. A.; Wall, W. A. Extension of a multiphase tumour growth model to study nanoparticle delivery to solid tumours. PLoS One 2020, 15, e0228443.

[7]

Tay, K. C.; Tan, L. T. H.; Chan, C. K.; Hong, S. L.; Chan, K. G.; Yap, W. H.; Pusparajah, P.; Lee, L. H.; Goh, B. H. Formononetin: A review of its anticancer potentials and mechanisms. Front. Pharmacol. 2019, 10, 820.

[8]

Kiraga, Ł.; Cheda, Ł.; Taciak, B.; Różańska, K.; Tonecka, K.; Szulc, A.; Kilian, K.; Górka, E.; Rogulski, Z.; Rygiel, T. P. et al. Changes in hypoxia level of CT26 tumors during various stages of development and comparing different methods of hypoxia determination. PLoS One 2018, 13, e0206706.

[9]

Wayne, E. C.; Long, C.; Haney, M. J.; Batrakova, E. V.; Leisner, T. M.; Parise, L. V.; Kabanov, A. V. Targeted delivery of siRNA lipoplexes to cancer cells using macrophage transient horizontal gene transfer. Adv. Sci. 2019, 6, 1900582.

[10]

Aras, S.; Zaidi, M. R. TAMeless traitors: Macrophages in cancer progression and metastasis. Br. J. Cancer 2017, 117, 1583–1591.

[11]

He, X. Y.; Cao, H. Q.; Wang, H.; Tan, T.; Yu, H. J.; Zhang, P. C.; Yin, Q.; Zhang, Z. W.; Li, Y. P. Inflammatory monocytes loading protease-sensitive nanoparticles enable lung metastasis targeting and intelligent drug release for anti-metastasis therapy. Nano Lett. 2017, 17, 5546–5554.

[12]

Prendergast, G. C.; Smith, C.; Thomas, S.; Mandik-Nayak, L.; Laury-Kleintop, L.; Metz, R.; Muller, A. J. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immun. 2014, 63, 721–735.

[13]

Gao, J.; Deng, F. S.; Jia, W. D. Inhibition of indoleamine 2,3-dioxygenase enhances the therapeutic efficacy of immunogenic chemotherapeutics in breast cancer. J. Breast Cancer 2019, 22, 196–209.

[14]

Zhu, Y.; Wen, L. J.; Shao, S. H.; Tan, Y. N.; Meng, T. T.; Yang, X. Q.; Liu, Y. P.; Liu, X.; Yuan, H.; Hu, F. Q. Inhibition of tumor-promoting stroma to enforce subsequently targeting AT1R on tumor cells by pathological inspired micelles. Biomaterials 2018, 161, 33–46.

[15]

MacParland, S. A.; Tsoi, K. M.; Ouyang, B.; Ma, X. Z.; Manuel, J.; Fawaz, A.; Ostrowski, M. A.; Alman, B. A.; Zilman, A.; Chan, W. C. W. et al. Phenotype determines nanoparticle uptake by human macrophages from liver and blood. ACS Nano 2017, 11, 2428–2443.

[16]

Liu, X. R.; Wang, C.; Ma, H. S.; Yu, F. Y.; Hu, F. Q.; Yuan, H. Water-responsive hybrid nanoparticles codelivering ICG and DOX effectively treat breast cancer via hyperthermia-aided DOX functionality and drug penetration. Adv. Healthc. Mater. 2019, 8, 1801486.

[17]

Liu, Z.; Xiong, M.; Gong, J. B.; Zhang, Y.; Bai, N.; Luo, Y. P.; Li, L. Y.; Wei, Y. Q.; Liu, Y. H.; Tan, X. Y. et al. Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat. Commun. 2014, 5, 4280.

[18]

Li, Y.; Niu, Y. M.; Zhu, J. H.; Gao, C. C.; Xu, Q. W.; He, Z. Y.; Chen, D. W.; Xu, M.; Liu, Y. Tailor-made legumain/pH dual-responsive doxorubicin prodrug-embedded nanoparticles for efficient anticancer drug delivery and in situ monitoring of drug release. Nanoscale 2020, 12, 2673–2685.

[19]

Liu, X.; Cheng, B. L.; Meng, T. T.; You, J.; Zhu, Y.; Lu, B. B.; Yuan, H.; Huang, X.; Hu, F. Q. Synthesis and biological application of BKT-140 peptide modified polymer micelles for treating tumor metastasis with an enhanced cell internalization. Polym. Chem. 2016, 7, 1375–1386.

[20]

Yang, X. Q.; Lian, K. K.; Tan, Y. N.; Zhu, Y.; Liu, X.; Zeng, Y. P.; Yu, T.; Meng, T. T.; Yuan, H.; Hu, F. Q. Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Carbohyd. Polym. 2020, 229, 115435.

[21]

Zheng, L. Y.; Hu, X. X.; Wu, H.; Mo, L. T.; Xie, S. T.; Li, J.; Peng, C.; Xu, S. J.; Qiu, L. P.; Tan, W. H. In vivo monocyte/macrophage-hitchhiked intratumoral accumulation of nanomedicines for enhanced tumor therapy. J. Am. Chem. Soc. 2020, 142, 382–391.

[22]

Qi, J.; Jin, F. Y.; You, Y. C.; Du, Y.; Liu, D.; Xu, X. L.; Wang, J.; Zhu, L. W.; Chen, M. J.; Shu, G. F. et al. Synergistic effect of tumor chemo-immunotherapy induced by leukocyte-hitchhiking thermal-sensitive micelles. Nat. Commun. 2021, 12, 4755.

[23]

Yu, F. Y.; Zhu, Y.; Liu, Y. P.; Qiu, G. X.; Shang, X. W.; Meng, T. T.; Yuan, H.; Hu, F. Q. Poly-γ-glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis. Biomater. Sci. 2020, 8, 5955–5968.

[24]

Carroll, E. C.; Jin, L.; Mori, A.; Muñoz-Wolf, N.; Oleszycka, E.; Moran, H. B. T.; Mansouri, S.; McEntee, C. P.; Lambe, E.; Agger, E. M. et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 2016, 44, 597–608.

[25]

Riteau, N.; Sher, A. Chitosan: An adjuvant with an unanticipated STING. Immunity 2016, 44, 522–524.

[26]

Sun, J. J.; Chen, Y. C.; Huang, Y. X.; Zhao, W. C.; Liu, Y. H.; Venkataramanan, R.; Lu, B. F.; Li, S. Programmable co-delivery of the immune checkpoint inhibitor NLG919 and chemotherapeutic doxorubicin via a redox-responsive immunostimulatory polymeric prodrug carrier. Acta Pharmacol. Sin. 2017, 38, 823–834.

[27]

Daley, J. M.; Thomay, A. A.; Connolly, M. D.; Reichner, J. S.; Albina, J. E. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukocyte Biol. 2008, 83, 64–70.

[28]

Showalter, A.; Limaye, A.; Oyer, J. L.; Igarashi, R.; Kittipatarin, C.; Copik, A. J.; Khaled, A. R. Cytokines in immunogenic cell death: Applications for cancer immunotherapy. Cytokine 2017, 97, 123–132.

Nano Research
Pages 5189-5205
Cite this article:
Yu F, Shang X, Zhu Y, et al. Self-oriented central-tumor delivery of legumain-cleavable vehicles governed by circulating monocyte/macrophage for precise tumor enrichment and immune activation. Nano Research, 2023, 16(4): 5189-5205. https://doi.org/10.1007/s12274-022-5076-x
Topics:

2653

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 27 July 2022
Revised: 19 September 2022
Accepted: 20 September 2022
Published: 13 December 2022
© Tsinghua University Press 2022
Return