Journal Home > Volume 16 , Issue 4

Fabricating single-atom catalysts (SACs) with high catalytic activity as well as great stability is a big challenge. Herein, we propose a precise synthesis strategy to stabilize single atomic ruthenium through regulating vanadium defects of nickel vanadium layered double hydroxides (NiV-LDH) ultrathin nanoribbons support. Correspondingly, the isolated atomically Ru doped NiV-LDH ultrathin nanoribbons (NiVRu-R) were successfully fabricated with a super-high Ru load of 12.8 wt.%. X-ray absorption spectrum (XAS) characterization further confirmed atomic dispersion of Ru. As catalysts for electrocatalytic hydrogen evolution reaction (HER) in alkaline media, the NiVRu-R demonstrated superior catalytic properties to the commercial Pt/C. Moreover, it maintained exceptional stability even after 5,000 cyclic voltammetry cycles. In-situ XAS and density functional theory (DFT) calculations prove that the Ru atomic sites are stabilized on supports through forming the Ru–O–V structure, which also help promote the catalytic properties through reducing the energy barrier on atomic Ru catalytic sites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering single atomic ruthenium on defective nickel vanadium layered double hydroxide for highly efficient hydrogen evolution

Show Author's information Xiaoyu Chen1,2,3Jiawei Wan4( )Meng Zheng1,2Jin Wang1( )Qinghua Zhang5Lin Gu6Lirong Zheng7Xianzhu Fu1Ranbo Yu3,8( )
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing Institution, Beijing 100083, China
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Advanced Material Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China

Abstract

Fabricating single-atom catalysts (SACs) with high catalytic activity as well as great stability is a big challenge. Herein, we propose a precise synthesis strategy to stabilize single atomic ruthenium through regulating vanadium defects of nickel vanadium layered double hydroxides (NiV-LDH) ultrathin nanoribbons support. Correspondingly, the isolated atomically Ru doped NiV-LDH ultrathin nanoribbons (NiVRu-R) were successfully fabricated with a super-high Ru load of 12.8 wt.%. X-ray absorption spectrum (XAS) characterization further confirmed atomic dispersion of Ru. As catalysts for electrocatalytic hydrogen evolution reaction (HER) in alkaline media, the NiVRu-R demonstrated superior catalytic properties to the commercial Pt/C. Moreover, it maintained exceptional stability even after 5,000 cyclic voltammetry cycles. In-situ XAS and density functional theory (DFT) calculations prove that the Ru atomic sites are stabilized on supports through forming the Ru–O–V structure, which also help promote the catalytic properties through reducing the energy barrier on atomic Ru catalytic sites.

Keywords: hydrogen evolution reaction, layered double hydroxide, ruthenium atomic site, ultrathin nanoribbons

References(50)

[1]

O’Mullane, A. P.; Escudero-Escribano, M.; Stephens, I. E. L.; Krischer, K. The role of electrocatalysis in a sustainable future: From renewable energy conversion and storage to emerging reactions. ChemPhysChem 2019, 20, 2900–2903.

[2]

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

[3]

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

[4]

Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

[5]

Zhao, D.; Sun, K. A.; Cheong, W. C.; Zheng, L. R.; Zhang, C.; Liu, S. J.; Cao, X.; Wu, K. L.; Pan, Y.; Zhuang, Z. W. et al. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution. Angew. Chem., Int. Ed. 2020, 59, 8982–8990.

[6]

Jia, Q. Y.; Liu, E. S.; Jiao, L.; Li, J. K.; Mukerjee, S. Current understandings of the sluggish kinetics of the hydrogen evolution and oxidation reactions in base. Curr. Opin. Electrochem. 2018, 12, 209–217.

[7]

Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions. Adv. Sci. 2018, 5, 1700464.

[8]

Wang, X. S.; Zheng, Y.; Sheng, W. C.; Xu, Z. J.; Jaroniec, M.; Qiao, S. Z. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 2020, 36, 125–138.

[9]

Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.

[10]

Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.

[11]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[12]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li. J.; Liu, J. Y.; Zhang. T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[13]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[14]

Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem., Int. Ed. 2017, 56, 13694–13698.

[15]

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

[16]

Zong, L. B.; Fan, K. C.; Wu, W. C.; Cui, L. X.; Zhang, L. L.; Johannessen, B.; Qi, D. C.; Yin, H. J.; Wang, Y.; Liu, P. R. et al. Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2104864.

[17]

Shah, K.; Dai, R. Y.; Mateen, M.; Hassan. Z.; Zhuang, Z. W.; Liu, C. H.; Israr, M.; Cheong, W. C.; Hu, B. T.; Tu, R. Y. et al. Cobalt single atom incorporated in ruthenium oxide sphere: A robust bifunctional electrocatalyst for HER and OER. Angew. Chem., Int. Ed. 2022, 61, e202114951.

[18]

Zhang, L. L.; Ren, Y. J.; Liu, W. G.; Wang, A. Q.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672.

[19]

Su, Y. Q.; Zhang, L.; Wang, Y. F.; Liu, J. X.; Muravev, V.; Alexopoulos, K.; Filot, I. A. W.; Vlachos, D. G.; Hensen, E. J. M. Stability of heterogeneous single-atom catalysts: A scaling law mapping thermodynamics to kinetics. npj Comput. Mater. 2020, 6, 144.

[20]

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

[21]

Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

[22]

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

[23]

Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.

[24]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[25]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[26]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[27]

Yin, H. J.; Tang, Z. Y. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 2016, 45, 4873–4891.

[28]

Zheng, Z. M.; Lin, L. L.; Mo, S. G.; Ou, D. H.; Tao, J.; Qin, R. X.; Fang, X. L.; Zheng, N. F. Economizing production of diverse 2D layered metal hydroxides for efficient overall water splitting. Small 2018, 14, 1800759.

[29]

Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.

[30]

Zeng, Y. M.; Lin, S. W.; Gu, D.; Li, X. G. Two-dimensional nanomaterials for gas sensing applications: The role of theoretical calculations. Nanomaterials 2018, 8, 851.

[31]

Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9, 1734–1743.

[32]

Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

[33]

Zhang, J.; Wu, X.; Cheong, W. C.; Chen, W. X.; Lin, R.; Li, J.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.

[34]

Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, G. H.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Fan, Z. Z. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

[35]

Chen, X. Y.; Wan, J. W.; Wang, J.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Wang, N.; Yu, R. B. Atomically dispersed ruthenium on nickel hydroxide ultrathin nanoribbons for highly efficient hydrogen evolution reaction in alkaline media. Adv. Mater. 2021, 33, 2104764.

[36]

Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Hun Kwak, J.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.

[37]

Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3−x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042.

[38]

Jiang, M.; Li, J.; Li, J. M.; Zhao, Y.; Pan, L. J.; Cao, Q. Q.; Wang. D. H.; Du, Y. W. Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 9654–9660.

[39]

Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179–6187.

[40]

Sun, H. C.; Tung, C. W.; Qiu, Y.; Zhang, W.; Wang, Q.; Li, Z. S.; Tang, J.; Chen, H. C.; Wang, C. D.; Chen, H. M. Atomic metal–support interaction enables reconstruction-free dual-site electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1174–1186.

[41]

He, D. Y.; Cao, L. Y.; Huang, J. F.; Kajiyoshi, K.; Wu, J. P.; Wang, C. C.; Liu, Q. Q.; Yang, D.; Feng, L. L. In-situ optimizing the valence configuration of vanadium sites in NiV-LDH nanosheet arrays for enhanced hydrogen evolution reaction. J. Energy Chem. 2020, 47, 263–271.

[42]

Salzmann, B. B. V.; van der Sluijs, M. M.; Soligno, G.; Vanmaekelbergh, D. Oriented attachment: From natural crystal growth to a materials engineering tool. Acc. Chem. Res. 2021, 54, 787–797.

[43]

Ribeiro, C.; Lee, E. J. H.; Longo, E.; Leite, E. R. A kinetic model to describe nanocrystal growth by the oriented attachment mechanism. ChemPhysChem 2005, 6, 690–696.

[44]

Sirisinudomkit, P.; Iamprasertkun, P.; Krittayavathananon, A.; Pettong, T.; Dittanet, P.; Kidkhunthod, P.; Sawangphruk, M. Hybrid energy storage of battery-type nickel hydroxide and supercapacitor-type graphene: Redox additive and charge storage mechanism. Sustainable Energy Fuels 2017, 1, 275–279.

[45]

Zhang, X. Y.; Ikram, M.; Liu, Z.; Teng, L.; Xue, J. L.; Wang, D.; Li, L.; Shi, K. Y. Expanded graphite/NiAl layered double hydroxide nanowires for ultra-sensitive, ultra-low detection limits and selective NOx gas detection at room temperature. RSC Adv. 2019, 9, 8768–8777.

[46]

Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

[47]

Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.; Ramezanzadeh, B. Corrosion inhibitor release from Zn-Al-[PO43−]-[CO32−] layered double hydroxide nanoparticles. Prog. Color Colorants Coat. 2016, 9, 233–248.

[48]

Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

[49]

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

[50]
Hu, C. Y.; Ma, Q. Y.; Hung, S. F.; Chen, Z. N.; Ou, D. H.; Ren, B.; Chen, H. M.; Fu, G.; Zheng, N. F. In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis. Chem 2017, 3, 122−133.
DOI
File
12274_2022_5075_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 July 2022
Revised: 18 September 2022
Accepted: 19 September 2022
Published: 24 October 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos.51932001, 51872024, 52022097, and 22022508), the National Key Research and Development Program of China (No. 2018YFA0703503), the Foundation of the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2020048), and China Postdoctoral Science Foundation (No. 2022M712167). We thank the BL1W1B in BSRF, BL14W1 and BL11B in SSRF for XAS measurement.

Return