Journal Home > Volume 16 , Issue 10

Supported metal (oxide) clusters, with both rich surface sites and high atom utilization efficiency, have shown improved activity and selectivity for many catalytic reactions over nanoparticle and single atom catalysts. Yet, the role of cluster catalysts has been rarely reported in CO2 electroreduction reaction (CO2RR), which is a promising route for converting CO2 to liquid fuels like formic acid with renewable electricity. Here we develop a bismuth oxide (BiOn) cluster catalyst for highly efficient CO2RR to formate. The BiOn cluster catalyst exhibits excellent activity, selectivity, and stability towards formate production, with a formate Faradaic efficiency of over 90% at a current density up to 500 mA·cm−2 in an alkaline membrane electrode assembly electrolyzer, corresponding to a mass activity as high as 3,750 A·gBi−1. The electrolyzer with the BiOn cluster catalyst delivers a remarkable formate production rate of 0.56 mmol·min−1 at a high single-pass CO2 conversion of 44%. Density functional theory calculations indicate that Bi4O3 cluster is more favorable for stabilizing the HCOO* intermediate than Bi(001) surface and single site BiC4 motif, rationalizing the improved formate production over the BiOn cluster catalyst. This work highlights the great importance of cluster catalysts in activity and selectivity control in electrocatalytic CO2 conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting CO2 electroreduction to formate via bismuth oxide clusters

Show Author's information Xiaole Jiang1,§( )Le Lin2,§Youwen Rong2,3,§Rongtan Li2,4Qike Jiang2Yaoyue Yang1Dunfeng Gao2( )
Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
School of Science, Dalian Maritime University, Dalian 116026, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Xiaole Jiang, Le Lin, and Youwen Rong contributed equally to this work.

Abstract

Supported metal (oxide) clusters, with both rich surface sites and high atom utilization efficiency, have shown improved activity and selectivity for many catalytic reactions over nanoparticle and single atom catalysts. Yet, the role of cluster catalysts has been rarely reported in CO2 electroreduction reaction (CO2RR), which is a promising route for converting CO2 to liquid fuels like formic acid with renewable electricity. Here we develop a bismuth oxide (BiOn) cluster catalyst for highly efficient CO2RR to formate. The BiOn cluster catalyst exhibits excellent activity, selectivity, and stability towards formate production, with a formate Faradaic efficiency of over 90% at a current density up to 500 mA·cm−2 in an alkaline membrane electrode assembly electrolyzer, corresponding to a mass activity as high as 3,750 A·gBi−1. The electrolyzer with the BiOn cluster catalyst delivers a remarkable formate production rate of 0.56 mmol·min−1 at a high single-pass CO2 conversion of 44%. Density functional theory calculations indicate that Bi4O3 cluster is more favorable for stabilizing the HCOO* intermediate than Bi(001) surface and single site BiC4 motif, rationalizing the improved formate production over the BiOn cluster catalyst. This work highlights the great importance of cluster catalysts in activity and selectivity control in electrocatalytic CO2 conversion.

Keywords: bismuth oxide, formate, membrane electrode assembly, CO2 electroreduction reaction, cluster catalyst

References(74)

[1]

Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 2018, 118, 434–504.

[2]

Burkart, M. D.; Hazari, N.; Tway, C. L.; Zeitler, E. L. Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal. 2019, 9, 7937–7956.

[3]

Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.

[4]

Gao, D. F.; Li, W. J.; Wang, H. Y.; Wang, G. X.; Cai, R. Heterogeneous catalysis for CO2 conversion into chemicals and fuels. Trans. Tianjin Univ. 2022, 28, 245–264.

[5]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[6]

Jiang, X. L.; Li, H. B.; Xiao, J. P.; Gao, D. F.; Si, R.; Yang, F.; Li, Y. S.; Wang, G. X.; Bao, X. H. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. Nano Energy 2018, 52, 345–350.

[7]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[8]

Jiang, X. L.; Li, H. F.; Yang, Y. Y.; Gao, D. F. pH dependence of CO2 electroreduction selectivity over size-selected Au nanoparticles. J. Mater. Sci. 2020, 55, 13916–13926.

[9]

Choi, Y. W.; Scholten, F.; Sinev, I.; Roldan Cuenya, B. Enhanced stability and CO/formate selectivity of plasma-treated SnOx/AgOx catalysts during CO2 electroreduction. J. Am. Chem. Soc. 2019, 141, 5261–5266.

[10]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[11]

Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

[12]

Gao, D. F.; Zhou, H.; Cai, F.; Wang, D. N.; Hu, Y. F.; Jiang, B.; Cai, W. B.; Chen, X. Q.; Si, R.; Yang, F. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 2017, 10, 2181–2191.

[13]

Kim, C.; Möller, T.; Schmidt, J.; Thomas, A.; Strasser, P. Suppression of competing reaction channels by Pb adatom decoration of catalytically active Cu surfaces during CO2 electroreduction. ACS Catal. 2019, 9, 1482–1488.

[14]

Ye, K.; Zhou, Z. W.; Shao, J. Q.; Lin, L.; Gao, D. F.; Ta, N.; Si, R.; Wang, G. X.; Bao, X. H. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 4814–4821.

[15]

Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

[16]

Birdja, Y. Y.; Vos, R. E.; Wezendonk, T. A.; Jiang, L.; Kapteijn, F.; Koper, M. T. M. Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(III) protoporphyrin. ACS Catal. 2018, 8, 4420–4428.

[17]

Lee, C. H.; Kanan, M. W. Controlling H+ vs. CO2 reduction selectivity on Pb electrodes. ACS Catal. 2015, 5, 465–469.

[18]

Yu, W. T.; Wen, L. S.; Gao, J.; Chen, S. Z.; He, Z. Q.; Wang, D.; Shen, Y.; Song, S. Facile treatment tuning the morphology of Pb with state-of-the-art selectivity in CO2 electroreduction to formate. Chem. Commun. 2021, 57, 7418–7421.

[19]

Yang, W. F.; Chen, S.; Ren, W. H.; Zhao, Y.; Chen, X. J.; Jia, C.; Liu, J. N.; Zhao, C. Nanostructured amalgams with tuneable silver–mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide. J. Mater. Chem. A 2019, 7, 15907–15912.

[20]

Deng, W. Y.; Zhang, L.; Li, L. L.; Chen, S.; Hu, C. L.; Zhao, Z. J.; Wang, T.; Gong, J. L. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2911–2915.

[21]

Guan, Y. Y.; Liu, M. M.; Rao, X. F.; Liu, Y. Y.; Zhang, J. J. Electrochemical reduction of carbon dioxide (CO2): Bismuth-based electrocatalysts. J. Mater. Chem. A 2021, 9, 13770–13803.

[22]

Lee, C. W.; Hong, J. S.; Yang, K. D.; Jin, K.; Lee, J. H.; Ahn, H. Y.; Seo, H.; Sung, N. E.; Nam, K. T. Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte. ACS Catal. 2018, 8, 931–937.

[23]

Zhang, Y.; Li, F. W.; Zhang, X. L.; Williams, T.; Easton, C. D.; Bond, A. M.; Zhang, J. Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J. Mater. Chem. A 2018, 6, 4714–4720.

[24]

Wang, Z. Q.; Zu, X. L.; Li, X. D.; Li, L.; Wu, Y.; Wang, S. M.; Ling, P. Q.; Zhao, Y.; Sun, Y. F.; Xie, Y. Industrial-current-density CO2-to-formate conversion with low overpotentials enabled by disorder-engineered metal sites. Nano Res. 2022, 15, 6999–7007.

[25]

Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

[26]

Zhang, X.; Lei, T.; Liu, Y. Y.; Qiao, J. L. Enhancing CO2 electrolysis to formate on facilely synthesized Bi catalysts at low overpotential. Appl. Catal. B: Environ. 2017, 218, 46–50.

[27]

Zeng, G.; He, Y. C.; Ma, D. D.; Luo, S. W.; Zhou, S. H.; Cao, C. S.; Li, X. F.; Wu, X. T.; Liao, H. G.; Zhu, Q. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2022, 32, 2201125.

[28]

Yang, C.; Chai, J. X.; Wang, Z.; Xing, Y. L.; Peng, J.; Yan, Q. Y. Recent progress on bismuth-based nanomaterials for electrocatalytic carbon dioxide reduction. Chem. Res. Chin. Univ. 2020, 36, 410–419.

[29]

Zhang, W. J.; Yang, S. Y.; Jiang, M. H.; Hu, Y.; Hu, C. Q.; Zhang, X. L.; Jin, Z. Nanocapillarity and nanoconfinement effects of pipet-like bismuth@carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Nano Lett. 2021, 21, 2650–2657.

[30]

Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z. P.; Amal, R.; Tricoli, A. Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv. Funct. Mater. 2020, 30, 1906478.

[31]

Zhang, Z. Y.; Chi, M. F.; Veith, G. M.; Zhang, P. F.; Lutterman, D. A.; Rosenthal, J.; Overbury, S. H.; Dai, S.; Zhu, H. Y. Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: The elucidation of size and surface condition effects. ACS Catal. 2016, 6, 6255–6264.

[32]

Medina-Ramos, J.; Lee, S. S.; Fister, T. T.; Hubaud, A. A.; Sacci, R. L.; Mullins, D. R.; DiMeglio, J. L.; Pupillo, R. C.; Velardo, S. M.; Lutterman, D. A. et al. Structural dynamics and evolution of bismuth electrodes during electrochemical reduction of CO2 in imidazolium-based ionic liquid solutions. ACS Catal. 2017, 7, 7285–7295.

[33]

Xie, H.; Zhang, T.; Xie, R. K.; Hou, Z. F.; Ji, X. C.; Pang, Y. Y.; Chen, S. Q.; Titirici, M. M.; Weng, H. M.; Chai, G. L. Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction. Adv. Mater. 2021, 33, 2008373.

[34]

Xia, D.; Yu, H. Y.; Xie, H.; Huang, P.; Menzel, R.; Titirici, M. M.; Chai, G. L. Recent progress of Bi-based electrocatalysts for electrocatalytic CO2 reduction. Nanoscale 2022, 14, 7957–7973.

[35]

Deng, P. L.; Wang, H. M.; Qi, R. J.; Zhu, J. X.; Chen, S. H.; Yang, F.; Zhou, L.; Qi, K.; Liu, H. F.; Xia, B. Y. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2020, 10, 743–750.

[36]

Yi, L. C.; Chen, J. X.; Shao, P.; Huang, J. H.; Peng, X. X.; Li, J. W.; Wang, G. X.; Zhang, C.; Wen, Z. H. Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 20112–20119.

[37]

Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

[38]

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Zhao, P. Y.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Ma, J.; Liu, J. et al. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy 2018, 53, 808–816.

[39]

Zhao, M. M.; Gu, Y. L.; Gao, W. C.; Cui, P. X.; Tang, H.; Wei, X. Y.; Zhu, H.; Li, G. Q.; Yan, S. C.; Zhang, X. Y. et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118625.

[40]

Wang, D.; Liu, C. W.; Zhang, Y. N.; Wang, Y. Y.; Wang, Z. L.; Ding, D.; Cui, Y.; Zhu, X. M.; Pan, C. S.; Lou, Y. et al. CO2 Electroreduction to formate at a partial current density up to 590 mA·mg−1 via micrometer-scale lateral structuring of bismuth nanosheets. Small 2021, 17, 2100602.

[41]

Montiel, I. Z.; Dutta, A.; Kiran, K.; Rieder, A.; Iarchuk, A.; Vesztergom, S.; Mirolo, M.; Martens, I.; Drnec, J.; Broekmann, P. CO2 conversion at high current densities: Stabilization of Bi(III)-containing electrocatalysts under CO2 gas flow conditions. ACS Catal. 2022, 12, 10872–10886.

[42]
Ren, J. Z.; Long, X.; Wang, X. T.; Lin, Z. D.; Cai, R. M.; Ju, M.; Qiu, Y. F.; Yang, S. H. Defect-rich heterostructured Bi-based catalysts for efficient CO2 reduction reaction to formate in wide operable windows. Energy Technol., in press, https://doi.org/10.1002/ente.202200561.
DOI
[43]

Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

[44]

Meng, L. Z.; Zhang, E. H.; Peng, H. Y.; Wang, Y.; Wang, D. S.; Rong, H. P.; Zhang, J. T. Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas. ChemCatChem 2022, 14, e202101801.

[45]

Yang, X. P.; Chen, Y. L.; Qin, L.; Wu, X. N.; Wu, Y. T.; Yan, T.; Geng, Z. G.; Zeng, J. Boost selectivity of HCOO using anchored Bi single atoms towards CO2 reduction. ChemSusChem 2020, 13, 6307–6311.

[46]

Wang, Z. Y.; Wang, C.; Hu, Y. D.; Yang, S.; Yang, J.; Chen, W. X.; Zhou, H.; Zhou, F. Y.; Wang, L. X.; Du, J. Y. et al. Simultaneous diffusion of cation and anion to access N,S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021, 14, 2790–2796.

[47]

Wang, Y.; Liu, T. Y.; Li, Y. F. Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO2 reduction reaction. Chem. Sci. 2022, 13, 6366–6372.

[48]

Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.

[49]

Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

[50]

Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

[51]

Guo, F.; Zou, Z. J.; Zhang, Z. Y.; Zeng, T.; Tan, Y. Y.; Chen, R. Z.; Wu, W.; Cheng, N. C.; Sun, X. L. Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 5468–5474.

[52]

Zhang, Q.; He, A. B.; Yang, Y.; Du, J.; Liu, Z. H.; Tao, C. Y. Plasma-activated CoOx nanoclusters supported on graphite intercalation compounds for improved CO2 electroreduction to formate. J. Mater. Chem. A 2019, 7, 24337–24346.

[53]

Hu, Q.; Han, Z.; Wang, X. D.; Li, G. M.; Wang, Z. Y.; Huang, X. W.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew. Chem., Int. Ed. 2020, 59, 19054–19059.

[54]

Wei, P. F.; Li, H. F.; Lin, L.; Gao, D. F.; Zhang, X. M.; Gong, H. M.; Qing, G. Y.; Cai, R.; Wang, G. X.; Bao, X. H. CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Sci. China Chem. 2020, 63, 1711–1715.

[55]

Peng, H. Q.; Li, Q. H.; Hu, M. X.; Xiao, L.; Lu, J. T.; Zhuang, L. Alkaline polymer electrolyte fuel cells stably working at 80 °C. J. Power Sources 2018, 390, 165–167.

[56]

Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[57]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[58]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[59]

Zeng, Z. H.; Chan, M. K. Y.; Zhao, Z. J.; Kubal, J.; Fan, D. X.; Greeley, J. Towards first principles-based prediction of highly accurate electrochemical pourbaix diagrams. J. Phys. Chem. C 2015, 119, 18177–18187.

[60]

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

[61]

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

[62]

Cheng, Y.; Zhao, S. Y.; Li, H. B.; He, S.; Veder, J. P.; Johannessen, B.; Xiao, J. P.; Lu, S. F.; Pan, J.; Chisholm, M. F. et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B: Environ. 2019, 243, 294–303.

[63]

Huang, N.; Zhang, Z. H.; Lu, Y. B.; Tian, J. S.; Jiang, D.; Yue, C. G.; Zhang, P. B.; Jiang, P. P.; Leng, Y. Assembly of platinum nanoparticles and single-atom bismuth for selective oxidation of glycerol. J. Mater. Chem. A 2021, 9, 25576–25584.

[64]

Gao, D. F.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Roldan Cuenya, B. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 2017, 11, 4825–4831.

[65]

Lamagni, P.; Miola, M.; Catalano, J.; Hvid, M. S.; Mamakhel, M. A. H.; Christensen, M.; Madsen, M. R.; Jeppesen, H. S.; Hu, X. M.; Daasbjerg, K. et al. Restructuring metal–organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate. Adv. Funct. Mater. 2020, 30, 1910408.

[66]

Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

[67]

Brugger, J.; Tooth, B.; Etschmann, B.; Liu, W. H.; Testemale, D.; Hazemann, J. L.; Grundler, P. V. Structure and thermal stability of Bi(III) oxy-clusters in aqueous solutions. J. Solution Chem. 2014, 43, 314–325.

[68]

Gupta, N.; Gattrell, M.; MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 2006, 36, 161–172.

[69]

Gao, D. F.; Wei, P. F.; Li, H. F.; Lin, L.; Wang, G. X.; Bao, X. H. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2009021.

[70]

Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W. T.; Stavitski, E.; Alshareef, H. N.; Wang, H. T. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 2019, 4, 776–785.

[71]

Fan, L.; Xia, C.; Zhu, P.; Lu, Y. Y.; Wang, H. T. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 2020, 11, 3633.

[72]

Wang, Z. T.; Zhou, Y. S.; Liu, D. Y.; Qi, R. J.; Xia, C. F.; Li, M. T.; You, B.; Xia, B. Y. Carbon-confined indium oxides for efficient carbon dioxide reduction in a solid-state electrolyte flow cell. Angew. Chem., Int. Ed. 2022, 61, e202200552.

[73]

Rabinowitz, J. A.; Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 2020, 11, 5231.

[74]

Chen, C. H.; Wu, D. Y.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.

File
12274_2022_5073_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 July 2022
Revised: 31 August 2022
Accepted: 19 September 2022
Published: 09 November 2022
Issue date: October 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1501503), the National Natural Science Foundation of China (Nos. 22002121, 22172121, and 22002155), the Open Project Fund of State Key Laboratory of Catalysis (No. N-19-04), the Fundamental Research Funds for the Central Universities (No. 2021HQZZ05), the Key Laboratory of Fundamental Chemistry of the State Ethnic Commission (No. 2021PTJS25), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21061010), the Natural Science Foundation of Liaoning Province (No. 2021-MS-022), and the High-Level Talents Innovation Project of Dalian City (No. 2020RQ038). We thank Prof. G. X. W. and Prof. Q. F. at the DICP for fruitful discussions and the staff at the beamline BL14W1 (SSRF) for their technical assistance during the XAS measurements.

Return