Journal Home > Volume 16 , Issue 4

The sufficient utilization of Mott–Schottky effect for boosting alkaline hydrogen evolution reaction (HER) depends upon scale minimizing of interface components and exposure maximizing of Mott–Schottky interface. Here, a self-standing porous tubular Mott–Schottky electrocatalyst is constructed by a self-template etching strategy, where amorphous WOx (a-WOx) nano-matrix connects Co nanoparticles. This novel “Janus” electrocatalyst maximizes the Mott–Schottky effect by not only providing a highly exposed micro interface, but also simultaneously accelerating the water dissociation and optimizing the hydrogen desorption process. Experimental findings and theoretical calculations reveal that Co/a-WOx Mott–Schottky heterointerface triggers the electron redistribution and a build-in electric field, which can not only optimize the adsorption energy of the reaction intermediates, but also facilitate the charge transfer. Thus, Co/a-WOx requires an overpotential of only 36.3 mV at 10 mA·cm−2 and shows a small Tafel slope of 53.9 mV·dec−1 as well as an excellent 200-h long-term stability. This work provides a novel design strategy for maximizing the Mott–Schottky effect on promoting alkaline HER.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-standing hollow porous Co/a-WOx nanowire with maximum Mott–Schottky effect for boosting alkaline hydrogen evolution reaction

Show Author's information Jianpo ChenJianping ZhengWeidong HeHaikuan LiangYan Li( )Hao Cui( )Chengxin Wang( )
School of Materials Science and Engineering, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China

Abstract

The sufficient utilization of Mott–Schottky effect for boosting alkaline hydrogen evolution reaction (HER) depends upon scale minimizing of interface components and exposure maximizing of Mott–Schottky interface. Here, a self-standing porous tubular Mott–Schottky electrocatalyst is constructed by a self-template etching strategy, where amorphous WOx (a-WOx) nano-matrix connects Co nanoparticles. This novel “Janus” electrocatalyst maximizes the Mott–Schottky effect by not only providing a highly exposed micro interface, but also simultaneously accelerating the water dissociation and optimizing the hydrogen desorption process. Experimental findings and theoretical calculations reveal that Co/a-WOx Mott–Schottky heterointerface triggers the electron redistribution and a build-in electric field, which can not only optimize the adsorption energy of the reaction intermediates, but also facilitate the charge transfer. Thus, Co/a-WOx requires an overpotential of only 36.3 mV at 10 mA·cm−2 and shows a small Tafel slope of 53.9 mV·dec−1 as well as an excellent 200-h long-term stability. This work provides a novel design strategy for maximizing the Mott–Schottky effect on promoting alkaline HER.

Keywords: electrocatalyst, hydrogen evolution reaction (HER), Mott–Schottky effect, self-template etching, electron redistribution

References(56)

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Gandía, L. M.; Oroz, R.; Ursúa, A.; Sanchis, P.; Diéguez, P. M. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions. Energy Fuels 2007, 21, 1699–1706.

[3]

Christopher, K.; Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 2012, 5, 6640–6651.

[4]

Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.

[5]

Li, Y. J.; Zhang, H. C.; Xu, T. H.; Lu, Z. Y.; Wu, X. C.; Wan, P. B.; Sun, X. M.; Jiang, L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1737–1744.

[6]

Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120–12124.

[7]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[8]

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 7051–7055.

[9]

Li, G. W.; Sun, Y.; Rao, J. C.; Wu, J. Q.; Kumar, A.; Xu, Q. N.; Fu, C. G.; Liu, E. K.; Blake, G. R.; Werner, P. et al. Carbon-tailored semimetal MoP as an efficient hydrogen evolution electrocatalyst in both alkaline and acid media. Adv. Energy Mater. 2018, 8, 1801258.

[10]

Gong, Q. F.; Wang, Y.; Hu, Q.; Zhou, J. G.; Feng, R. F.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Li, Y. F. et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nat. Commun. 2016, 7, 13216.

[11]

Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.

[12]

Manoharan, Y.; Hosseini, S. E.; Butler, B.; Alzhahrani, H.; Fou, B. T.; Ashuri, T.; Krohn, J. Hydrogen fuel cell vehicles; current status and future prospect. Appl. Sci. 2019, 9, 2296.

[13]

Li, D. Q.; Liao, Q. Y.; Ren, B. W.; Jin, Q. Y.; Cui, H.; Wang, C. X. A 3D-composite structure of FeP nanorods supported by vertically aligned graphene for the high-performance hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 11301–11308.

[14]

He, W. D.; Chen, J. P.; Zhang, Q. Y.; Cui, H.; Wang, C. X. Tuning charge distribution of Ru nanoparticles via coupling ammonium tungsten bronze as Pt-like electrocatalyst for hydrogen evolution reaction. Chem. Eng. J. 2022, 436, 135044.

[15]

Wang, H.; Min, S. X.; Wang, Q.; Li, D. B.; Casillas, G.; Ma, C.; Li, Y. Y.; Liu, Z. X.; Li, L. J.; Yuan, J. Y. et al. Nitrogen-doped nanoporous carbon membranes with Co/CoP Janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 2017, 11, 4358–4364.

[16]

Zhang, L. L.; Lei, Y. T.; Zhou, D. N.; Xiong, C. L.; Jiang, Z. L.; Li, X. Y.; Shang, H. S.; Zhao, Y. F.; Chen, W. X.; Zhang, B. Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Res. 2022, 15, 2895–2904.

[17]

Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core–shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.

[18]

Zhang, H.; Wang, J.; Qin, F. Q.; Liu, H. L.; Wang, C. V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Res. 2021, 14, 3489–3496.

[19]

Biswas, A.; Nandi, S.; Kamboj, N.; Pan, J.; Bhowmik, A.; Dey, R. S. Alteration of electronic band structure via a metal–semiconductor interfacial effect enables high Faradaic efficiency for electrochemical nitrogen fixation. ACS Nano 2021, 15, 20364–20376.

[20]

Li, T. F.; Yin, J. W.; Sun, D. M.; Zhang, M. Y.; Pang, H.; Xu, L.; Zhang, Y. W.; Yang, J.; Tang, Y. W.; Xue, J. M. Manipulation of Mott–Schottky Ni/CeO2 heterojunctions into N-doped carbon nanofibers for high-efficiency electrochemical water splitting. Small 2022, 18, 2106592.

[21]

Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. Q. MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 496–500.

[22]

Sun, L. H.; Li, Q. Y.; Zhang, S. N.; Xu, D.; Xue, Z. H.; Su, H.; Lin, X.; Zhai, G. Y.; Gao, P.; Hirano, S. I. et al. Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. Angew. Chem. Int. Ed. 2021, 60, 25766–25770.

[23]

Salah, A.; Ren, H. D.; Al-Ansi, N.; Yu, F. Y.; Lang, Z. L.; Tan, H. Q.; Li, Y. G. Ru/Mo2C@NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst. J. Mater. Chem. A 2021, 9, 20518–20529.

[24]

Su, J.; Li, G. D.; Li, X. H.; Chen, J. S. 2D/2D heterojunctions for catalysis. Adv. Sci. (Weinh.) 2019, 6, 1801702.

[25]

Zhang, Q.; Liu, B. Q.; Li, L.; Ji, Y.; Wang, C. G.; Zhang, L. Y.; Su, Z. M. Maximized Schottky effect: The ultrafine V2O3/Ni heterojunctions repeatedly arranging on monolayer nanosheets for efficient and stable water-to-hydrogen conversion. Small 2021, 17, 2005769.

[26]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[27]

Jin, Q. Y.; Ren, B. W.; Li, D. Q.; Cui, H.; Wang, C. X. In situ promoting water dissociation kinetic of Co based electrocatalyst for unprecedentedly enhanced hydrogen evolution reaction in alkaline media. Nano Energy 2018, 49, 14–22.

[28]

Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078.

[29]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[30]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[31]

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

[32]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[33]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[34]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[35]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[36]

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.

[37]

Hsin, J.;Arkhipov, A.;Yin, Y.;Stone, J. E.; Schulten, K. Using VMD: An Introductory Tutorial. Current Protocols in Bioinformatics 2008, 24, 5.7.1–5.7.48.

[38]

Gao, L. N.; Wang, X. F.; Xie, Z.; Song, W. F.; Wang, L. J.; Wu, X.; Qu, F. Y.; Chen, D.; Shen, G. Z. High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 2013, 1, 7167–7173.

[39]

Laskowski, F. A. L.; Oener, S. Z.; Nellist, M. R.; Gordon, A. M.; Bain, D. C.; Fehrs, J. L.; Boettcher, S. W. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry. Nat. Mater. 2020, 19, 69–76.

[40]

Han, H.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N. et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443–2454.

[41]

Deng, K.; Zhou, T. Q.; Mao, Q. Q.; Wang, S. Q.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. Surface engineering of defective and porous Ir metallene with polyallylamine for hydrogen evolution electrocatalysis. Adv. Mater. 2022, 34, 2110680.

[42]

Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

[43]

Sim, H. Y. F.; Chen, J. R. T.; Koh, C. S. L.; Lee, H. K.; Han, X. M.; Phan-Quang, G. C.; Pang, J. Y.; Lay, C. L.; Pedireddy, S.; Phang, I. Y. et al. ZIF-induced d-band modification in a bimetallic nanocatalyst: Achieving over 44% efficiency in the ambient nitrogen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 16997–17003.

[44]

Chen, J. P.; Jin, Q. Y.; Li, Y. W.; Li, Y.; Cui, H.; Wang, C. X. Design superior alkaline hydrogen evolution electrocatalyst by engineering dual active sites for water dissociation and hydrogen desorption. ACS Appl. Mater. Interfaces 2019, 11, 38771–38778.

[45]

Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

[46]

Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.

[47]

Chotiwan, S.; Tomiga, H.; Yamashita, S.; Katayama, M.; Inada, Y. Time-resolved study on dynamic chemical state conversion of SiO2-supported Co species by means of dispersive XAFS technique. J. Phys. Conf. Ser. 2016, 712, 012061.

[48]

Haas, O.; Ludwig, C.; Bergmann, U.; Singh, R. N.; Braun, A.; Graule, T. X-ray absorption investigation of the valence state and electronic structure of La1−xCaxCoO3−δ in comparison with La1−xSrxCoO3−δ and La1−xSrxFeO3−δ. J. Solid State Chem. 2011, 184, 3163–3171.

[49]

Chen, J. M.; Lee, J. M.; Huang, S. W.; Lu, K. T.; Jeng, H. T.; Chen, C. K.; Haw, S. C.; Chou, T. L.; Chen, S. A.; Hiraoka, N. et al. Intra- and intersite electronic excitations in multiferroic TbMnO3 probed by resonant inelastic X-ray scattering. Phys. Rev. B 2010, 82, 094442.

[50]

Feng, Y.; Li, Z.; Cheng, C. Q.; Kang, W. J.; Mao, J.; Shen, G. R.; Yang, J.; Dong, C. K.; Liu, H.; Du, X. W. Strawberry-like Co3O4-Ag bifunctional catalyst for overall water splitting. Appl. Catal. B Environ. 2021, 299, 120658.

[51]

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

[52]

Chen, C. L.; Luo, W. J.; Li, H. J.; Hu, T.; Zhao, Y. Z.; Zhao, Z. P.; Sun, X. L.; Zai, H. C.; Qi, Y. F.; Wu, M. H. et al. Optimized MoP with pseudo-single-atom tungsten for efficient hydrogen electrocatalysis. Chem. Mater. 2021, 33, 3639–3649.

[53]

Xu, Z. X.; Jin, S.; Seo, M. H.; Wang, X. L. Hierarchical Ni-Mo2C/N-doped carbon Mott–Schottky array for water electrolysis. Appl. Catal. B Environ. 2021, 292, 120168.

[54]

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

[55]

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

[56]

He, Y. M.; Liu, L. R.; Zhu, C.; Guo, S. S.; Golani, P.; Koo, B.; Tang, P. Y.; Zhao, Z. Q.; Xu, M. Z.; Zhu, C. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 2022, 5, 212–221.

File
12274_2022_5072_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 August 2022
Revised: 31 August 2022
Accepted: 18 September 2022
Published: 09 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51972349, U1801255, and 51972350) and the National Natural Science Foundation of Guangdong Province (No. 2022A1515011596). The DFT calculations were carried out using supercomputers “Tianhe-2” at NSCC Guangzhou.

Return