AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Promoting electrocatalytic alcohols oxidation coupled with H2 production via ligand intercalation strategy

Li Li( )Zhiyuan ZhangHaotong ChenFei Chen
College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Show Author Information

Graphical Abstract

A ligand intercalation strategy to enhance the alcohol electrooxidation by intercalating sodium dodecyl sulfonate (SDS) in the interlayer of Co(OH)2 catalyst (Co(OH)2-SDS), endows enhanced current density for glycerol oxidation, and achieves a high yield of 86.6% and high selectivity of 95.3% for formate production.

Abstract

Electrochemical alcohol oxidation, the alternate of oxygen evolution reaction, has been recognized as an effective way to produce value-added chemicals coupled with H2 production. However, the current researches still suffer from the low reaction rate and Faradaic efficiency (FE) that limits the overall efficiency. Herein, we report a ligand intercalation strategy to enhance the current density of alcohol electrooxidation by intercalating sodium dodecyl sulfonate (SDS) in the interlayer of Co(OH)2 catalyst (Co(OH)2-SDS). For instance, the Co(OH)2-SDS shows obviously enhanced current density for glycerol electrooxidation than that of pure Co(OH)2. The corresponding glycerol conversion rate and H2 production rate reach 0.35 mmol·cm−2·h−1 and 9.1 mL·cm−2·h−1 at 1.42 V vs. reversible hydrogen electrode, which are 2.2- and 1.9-fold higher than that of Co(OH)2. The yield of formate reaches 86.6% with selectivity of 95.3% at high glycerol conversion of 95.1% (with FE of 83.3% for glycerol oxidation). The Co(OH)2-SDS is demonstrated efficient for different alcohols with enhanced performance. We confirmed that the intercalation of SDS in Co(OH)2 can promote the generation and exposure of CoOOH reactive sites, and also facilitate the adsorption of alcohol, thus enabling high reaction rate.

Electronic Supplementary Material

Download File(s)
12274_2022_5070_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[2]

Navarro, R. M.; Peña, M. A.; Fierro, J. L. G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chem. Rev. 2007, 107, 3952–3991.

[3]

Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

[4]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

[5]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[6]

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[7]

Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326–1330.

[8]

Zheng, J.; Chen, X. L.; Zhong, X.; Li, S. Q.; Liu, T. Z.; Zhuang, G. L.; Li, X. N.; Deng, S. W.; Mei, D. H.; Wang, J. G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Adv. Funct. Mater. 2017, 27, 1704169.

[9]

Li, Z. H.; Yan, Y. F.; Xu, S. M.; Zhou, H.; Xu, M.; Ma, L. N.; Shao, M. F.; Kong, X. G.; Wang, B.; Zheng, L. R. et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nat. Commun. 2022, 13, 147.

[10]

Xu, Y.; Liu, M. Y.; Wang, S. Q.; Ren, K. L.; Wang, M. Z.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays. Appl. Catal. B: Environ. 2021, 298, 120493.

[11]

Han, X. T.; Sheng, H. Y.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J. S.; Jin, S. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts. ACS Catal. 2020, 10, 6741–6752.

[12]

Zhang, J. L.; Shen, Y. Electro-oxidation of glycerol into formic acid by nickel-copper electrocatalysts. J. Electrochem. Soc. 2021, 168, 084510.

[13]

Fan, L. F.; Ji, Y. X.; Wang, G. X.; Chen, J. X.; Chen, K.; Liu, X.; Wen, Z. H. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 2022, 144, 7224–7235.

[14]

Li, S. J.; Xie, W. F.; Song, Y. K.; Li, Y.; Song, Y. J.; Li, J. Z.; Shao, M. F. Integrated CoPt electrocatalyst combined with upgrading anodic reaction to boost hydrogen evolution reaction. Chem. Eng. J. 2022, 437, 135473.

[15]

Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F. Z.; Han, G. Q.; Jordan, T. J.; Hanson, T. B.; Liu, T. L.; Sun, Y. J. Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron reservoirs. Chem 2018, 4, 637–649.

[16]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[17]

Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C. L.; Huang, Y. C.; Xiao, Z. H.; Wei, Z. X.; Du, S. Q.; Chen, C. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974–2993.

[18]

Zhou, B.; Li, Y. Y.; Zou, Y. Q.; Chen, W.; Zhou, W.; Song, M. L.; Wu, Y. J.; Lu, Y. X.; Liu, J. L.; Wang, Y. Y. et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading. Angew. Chem., Int. Ed. 2021, 60, 22908–22914.

[19]

Zhou, H.; Li, Z. H.; Xu, S. M.; Lu, L. L.; Xu, M.; Ji, K. Y.; Ge, R. X.; Yan, Y. F.; Ma, L. N.; Kong, X. G. et al. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)-C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst. Angew. Chem., Int. Ed. 2021, 60, 8976–8982.

[20]

Kim, D.; Yu, S.; Zheng, F.; Roh, I.; Li, Y. F.; Louisia, S.; Qi, Z. Y.; Somorjai, G. A.; Frei, H.; Wang, L. W. et al. Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nat. Energy 2020, 5, 1032–1042.

[21]

Niu, L. J.; Liu, Z. W.; Liu, G. H.; Li, M. X.; Zong, X. P.; Wang, D. D.; An, L.; Qu, D.; Sun, X. M.; Wang, X. Y. et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 2022, 15, 3886–3893.

[22]

Zhong, Y.; Xu, Y.; Ma, J.; Wang, C.; Sheng, S. Y.; Cheng, C. T.; Li, M. X.; Han, L.; Zhou, L. L.; Cai, Z. et al. An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self-assembly. Angew. Chem. 2020, 132, 19257–19263.

[23]

Zhu, Q. S.; Murphy, C. J.; Baker, L. R. Opportunities for electrocatalytic CO2 reduction enabled by surface ligands. J. Am. Chem. Soc. 2022, 144, 2829–2840.

[24]

Garcia, A. C.; Kolb, M. J.; van Nierop Y Sanchez, C.; Vos, J.; Birdja, Y. Y.; Kwon, Y.; Tremiliosi-Filho, G.; Koper, M. T. M. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol. ACS Catal. 2016, 6, 4491–4500.

[25]

Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

[26]

Ge, R. X.; Ren, X.; Ji, X. Q.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P.; Chen, L. Benzoate anion-intercalated layered cobalt hydroxide nanoarray: An efficient electrocatalyst for the oxygen evolution reaction. ChemSusChem 2017, 10, 4004–4008.

[27]

Sun, X.; Zhu, G. L.; Yang, L.; Zheng, D. C.; Zhang, J.; Wen, H.; Feng, H.; Guan, X.; Wang, H. J.; Yao, Y. D. Pyrolysis of a self-supported dodecyl sulfate anion-intercalated Co(OH)2 nanosheet with enlarged amorphous phase content towards enhanced activity for alkaline water oxidation. Chem. Commun. 2019, 55, 11211–11214.

[28]

Wang, L.; Dong, Z. H.; Wang, Z. G.; Zhang, F. X.; Jin, J. Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: Understanding the effect of interlayer space on electrochemical activity. Adv. Funct. Mater. 2013, 23, 2758–2764.

[29]

Jiang, Y. M.; Li, X.; Wang, T. X.; Wang, C. M. Enhanced electrocatalytic oxygen evolution of α-Co(OH)2 nanosheets on carbon nanotube/polyimide films. Nanoscale 2016, 8, 9667–9675.

[30]

Li, J. B.; Li, Z. H.; Zhan, F.; Shao, M. F. Phase engineering of cobalt hydroxide toward cation intercalation. Chem. Sci. 2021, 12, 1756–1761.

[31]

Wang, Y.; Yang, C. X.; Li, Z. M.; Liang, Z. Z.; Cao, G. Z. The -NHx group induced formation of 3D α-Co(OH)2 curly nanosheet aggregates as efficient oxygen evolution electrocatalysts. Small 2020, 16, 2001973.

[32]

Zhang, F. R.; Du, N.; Song, S. E.; Hou, W. G. Mechano-hydrothermal synthesis of SDS intercalated LDH nanohybrids and their removal efficiency for 2,4-dichlorophenoxyacetic acid from aqueous solution. Mater. Chem. Phys. 2015, 152, 95–103.

[33]

Li, B.; He, J. Multiple effects of dodecanesulfonate in the crystal growth control and morphosynthesis of layered double hydroxides. J. Phys. Chem. C 2008, 112, 10909–10917.

[34]

Li, B.; He, J.; Evans, D. G. Experimental investigation of sheet flexibility of layered double hydroxides: One-pot morphosynthesis of inorganic intercalates. Chem. Eng. J. 2008, 144, 124–137.

[35]

Islam, M. R.; Guo, Z. H.; Rutman, D.; Benson, T. J. Immobilization of triazabicyclodecene in surfactant modified Mg/Al layered double hydroxides. RSC Adv. 2013, 3, 24247–24255.

[36]

Zhao, J. W.; Chen, J. L.; Xu, S. M.; Shao, M. F.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J. Mater. Chem. A 2013, 1, 8836–8843.

[37]

Oliveira, V. L.; Morais, C.; Servat, K.; Napporn, T. W.; Tremiliosi-Filho, G.; Kokoh, K. B. Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium. Electrochim. Acta 2014, 117, 255–262.

[38]

Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst. Green Chem. 2017, 19, 1958–1968.

[39]

Kwon, Y.; Schouten, K. J. P.; Koper, M. T. M. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 2011, 3, 1176–1185.

[40]

Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.

[41]

Song, S. Z.; Zhou, J.; Su, X. Z.; Wang, Y.; Li, J.; Zhang, L. J.; Xiao, G. P.; Guan, C. Z.; Liu, R. D.; Chen, S. G. et al. Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 2018, 11, 2945–2953.

Nano Research
Pages 4596-4602
Cite this article:
Li L, Zhang Z, Chen H, et al. Promoting electrocatalytic alcohols oxidation coupled with H2 production via ligand intercalation strategy. Nano Research, 2023, 16(4): 4596-4602. https://doi.org/10.1007/s12274-022-5070-3
Topics:

1281

Views

17

Crossref

17

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 13 July 2022
Revised: 18 September 2022
Accepted: 19 September 2022
Published: 02 November 2022
© Tsinghua University Press 2022
Return