Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
T-2 toxin, one of the most dangerous natural pollutants, induces apoptosis through multiple pathways. Amongst, P53 mediated apoptosis pathway, an important collection of molecules, plays a key role in cell vital activity. Real-time monitoring of upstream and downstream activation relationships of P53 mRNA, Bax mRNA, and cytochrome c (Cyt c) in signaling pathways is of great significance for understanding the apoptotic machinery in human physiology. In this work, a novel nucleic acid multicolor fluorescent probe, based on silica-coated symmetric gold nanostars (S-AuNSs@SiO2), was developed for highly sensitive in situ real-time imaging of P53 mRNA, Bax mRNA, and Cyt c during T-2 toxin-induced apoptosis. The nucleic acid chains modified with carboxyl groups were modified on the surface of S-AuNSs@SiO2 by amide reaction. The complementary chains of targeted mRNA and the aptamer of targeted Cyt c were modified with different fluorophores, respectively, and successfully hybridized on S-AuNSs@SiO2 surface. When targets were present, the fluorescent chains bound to the targets and detached from the material, resulting in the quenched fluorescence being revived. The probes based on S-AuNSs showed excellent performance is partly ascribed to the presence of 20 symmetric “hot spots”. Notably, the amide-bonded probe exhibited excellent anti-interference capability against biological agents (nucleases and biothiols). During the real-time fluorescence imaging of T-2 toxin-induced apoptosis, the corresponding fluorescence signals of P53 mRNA, Bax mRNA, and Cyt c were observed sequentially. Therefore, S-AuNSs@SiO2 probe not only provides a novel tool for real-time monitoring of apoptosis pathways cascade but also has considerable potential in disease diagnosis and pharmaceutical medical.
Vidal, A.; Mengelers, M.; Yang, S. P.; De Saeger, S.; De Boevre, M. Mycotoxin biomarkers of exposure: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1127–1155.
Yang, X.; Zhang, X. L.; Zhang, J.; Ji, Q.; Huang, W. Y.; Zhang, X. Y.; Li, Y. F. Spermatogenesis disorder caused by T-2 toxin is associated with germ cell apoptosis mediated by oxidative stress. Environ. Pollut. 2019, 251, 372–379.
Dai, C. S.; Xiao, X. L.; Sun, F. F.; Zhang, Y.; Hoyer, D.; Shen, J. Z.; Tang, S. S.; Velkov, T. T-2 toxin neurotoxicity: Role of oxidative stress and mitochondrial dysfunction. Arch. Toxicol. 2019, 93, 3041–3056.
Yang, X.; Liu, P. L.; Zhang, X. L.; Zhang, J.; Cui, Y. L.; Song, M.; Li, Y. F. T-2 toxin causes dysfunction of Sertoli cells by inducing oxidative stress. Ecotoxicol. Environ. Saf. 2021, 225, 112702.
Nagata, S.; Tanaka, M. Programmed cell death and the immune system. Nat. Rev. Immunol. 2017, 17, 333–340.
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516.
Del Re, D. P.; Amgalan, D.; Linkermann, A.; Liu, Q. H.; Kitsis, R. N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev. 2019, 99, 1765–1817.
Xia, P.; Liu, Y. N.; Cheng, Z. K. Signaling pathways in cardiac myocyte apoptosis. BioMed Res. Int. 2016, 2016, 9583268.
Yang, F.; Liao, J. Z.; Yu, W. L.; Qiao, N.; Guo, J. Y.; Han, Q. Y.; Li, Y.; Hu, L. M.; Pan, J. Q.; Tang, Z. X. Exposure to copper induces mitochondria-mediated apoptosis by inhibiting mitophagy and the PINK1/parkin pathway in chicken (Gallus gallus) livers. J. Hazard. Mater. 2021, 408, 124888.
Wei, H. D.; Qu, L. Z.; Dai, S. Y.; Li, Y.; Wang, H. L.; Feng, Y. L.; Chen, X. J.; Jiang, L. Y.; Guo, M.; Li, J. et al. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nat. Commun. 2021, 12, 2280.
Atatreh, N.; Ghattas, M. A.; Bardaweel, S. K.; Al Rawashdeh, S.; Al Sorkhy, M. Identification of new inhibitors of Mdm2–p53 interaction via pharmacophore and structure-based virtual screening. Drug Des. Dev. Ther. 2018, 12, 3741–3752.
Cosentino, K.; García-Sáez, A. J. Bax and bak pores: Are we closing the circle? Trends Cell Biol. 2017, 27, 266–275.
Chipuk, J. E.; Kuwana, T.; Bouchier-Hayes, L.; Droin, N. M.; Newmeyer, D. D.; Schuler, M.; Green, D. R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303, 1010–1014.
Tang, J.; Song, M. Y.; Watanabe, G.; Nagaoka, K.; Rui, X. L.; Li, C. M. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats. Environ. Pollut. 2016, 216, 27–37.
Han, Z. Q.; Liu, D. M.; Chen, L.; He, Y. C.; Tian, X. D.; Qi, L. S.; Chen, L. W.; Luo, Y.; Chen, Z. Y.; Hu, X. M. et al. PNO1 regulates autophagy and apoptosis of hepatocellular carcinoma via the MAPK signaling pathway. Cell Death Dis. 2021, 12, 552.
Sun, G.; Ma, B.; Guo, W. J.; Shan, M. H.; Ma, B. L. BRCA1 subcellular localization regulated by PI3K signaling pathway in triple negative breast cancer MDA-MB-231 cells and hormone-sensitve T47D cells. J. Clin. Oncol. 2018, 36, e13115.
Kirsanov, K.; Fetisov, T.; Lesovaya, E. A.; Maksimova, V.; Trukhanova, L.; Antoshina, E.; Gor’kova, T.; Morozova, O.; Safina, A.; Fleyshman, D. et al. Prevention of colorectal carcinogenesis by DNA-binding small-molecule curaxin CBL0137 involves suppression of Wnt signaling. Cancer Prev. Res. 2020, 13, 53–64.
Chen, X. X.; Niu, L. Y.; Yang, Q. Z. Visualizing the underlying signaling pathway related to nitric oxide and glutathione in cardiovascular disease therapy by a sequentially activated fluorescent probe. Anal. Chem. 2021, 93, 3922–3928.
Hang, Y. J.; Boryczka, J.; Wu, N. Q. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chem. Soc. Rev. 2022, 51, 329–375.
Gao, X. N.; Li, J.; Luan, M. M.; Li, Y. H.; Pan, W.; Li, N.; Tang, B. Real-time in situ monitoring of signal molecules’ evolution in apoptotic pathway via Au–Se bond constructed nanoprobe. Biosens. Bioelectron. 2020, 147, 111755.
Kyriazi, M. E.; Giust, D.; El-Sagheer, A. H.; Lackie, P. M.; Muskens, O. L.; Brown, T.; Kanaras, A. G. Multiplexed mRNA sensing and combinatorial-targeted drug delivery using DNA-gold nanoparticle dimers. ACS Nano 2018, 12, 3333–3340.
Zhu, R.; Li, J.; Lin, L. S.; Song, J. B.; Yang, H. H. Emerging plasmonic assemblies triggered by DNA for biomedical applications. Adv. Funct. Mater. 2021, 31, 2005709.
Gao, Y. S.; Zhang, S. B.; Wu, C. W.; Li, Q.; Shen, Z. F.; Lu, Y.; Wu, Z. S. Self-protected DNAzyme walker with a circular bulging DNA shield for amplified imaging of miRNAs in living cells and mice. ACS Nano 2021, 15, 19211–19224.
Hu, B.; Kong, F. P.; Gao, X. N.; Jiang, L. L.; Li, X. F.; Gao, W.; Xu, K. H.; Tang, B. Avoiding thiol compound interference: A nanoplatform based on high-fidelity Au–Se bonds for biological applications. Angew. Chem., Int. Ed. 2018, 57, 5306–5309.
Yang, Y. J.; Huang, J.; Yang, X. H.; Quan, K.; Wang, H.; Ying, L.; Xie, N. L.; Ou, M.; Wang, K. M. FRET nanoflares for intracellular mRNA detection: Avoiding false positive signals and minimizing effects of system fluctuations. J. Am. Chem. Soc. 2015, 137, 8340–8343.
Chaudhari, M. B.; Gnanaprakasam, B. Recent advances in the metal-catalyzed activation of amide bonds. Chem. Asian J. 2019, 14, 76–93.
Souza, B. S.; Mora, J. R.; Wanderlind, E. H.; Clementin, R. M.; Gesser, J. C.; Fiedler, H. D.; Nome, F.; Menger, F. M. Transforming a stable amide into a highly reactive one: Capturing the essence of enzymatic catalysis. Angew. Chem., Int. Ed. 2017, 56, 5345–5348.
Pill, M. F.; East, A. L. L.; Marx, D.; Beyer, M. K.; Clausen-Schaumann, H. Mechanical activation drastically accelerates amide bond hydrolysis, matching enzyme activity. Angew. Chem., Int. Ed. 2019, 58, 9787–9790.
Mrówczyński, R. Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 7541–7561.
Yang, L. T.; Kim, T. H.; Cho, H. Y.; Luo, J.; Lee, J. M.; Chueng, S. T. D.; Hou, Y. N.; Yin, P. T.; Han, J. Y.; Kim, J. H. et al. Hybrid graphene-gold nanoparticle-based nucleic acid conjugates for cancer-specific multimodal imaging and combined therapeutics. Adv. Funct. Mater. 2021, 31, 2006918.
Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460–10463.
Li, S. S.; Kong, Q. Y.; Zhang, M.; Yang, F.; Kang, B.; Xu, J. J.; Chen, H. Y. Plasmon-resonance-energy-transfer-based spectroscopy on single nanoparticles: Biomolecular recognition and enzyme kinetics. Anal. Chem. 2018, 90, 3833–3841.
Ahmad, N.; Wang, G.; Nelayah, J.; Ricolleau, C.; Alloyeau, D. Exploring the formation of symmetric gold nanostars by liquid-cell transmission electron microscopy. Nano Lett. 2017, 17, 4194–4201.
Dondapati, S. K.; Sau, T. K.; Hrelescu, C.; Klar, T. A.; Stefani, F. D.; Feldmann, J. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 2010, 4, 6318–6322.
Luo, G. F.; Chen, W. H.; Lei, Q.; Qiu, W. X.; Liu, Y. X.; Cheng, Y. J.; Zhang, X. Z. A Triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 2016, 26, 4339–4350.
Walters, C. M.; Pao, C.; Gagnon, B. P.; Zamecnik, C. R.; Walker, G. C. Bright Surface-enhanced Raman scattering with fluorescence quenching from silica encapsulated J-aggregate coated gold nanoparticles. Adv. Mater. 2018, 30, 1705381.
Blanco-Formoso, M.; Sousa-Castillo, A.; Xiao, X. F.; Marino-Lopez, A.; Turino, M.; Pazos-Perez, N.; Giannini, V.; Correa-Duarte, M. A.; Alvarez-Puebla, R. A. Boosting the analytical properties of gold nanostars by single particle confinement into yolk porous silica shells. Nanoscale 2019, 11, 21872–21879.
Zhou, J. L.; Zhao, R. X.; Liu, S. K.; Feng, L. L.; Li, W. T.; He, F.; Gai, S. L.; Yang, P. P. Europium doped silicon quantum dot As a novel FRET based dual detection probe: Sensitive detection of tetracycline, zinc, and cadmium. Small Methods 2021, 5, 2100812.
Wang, D.; Chen, J.; Ren, L.; Li, Q. L.; Li, D. D.; Yu, J. H. AIEgen-functionalised mesoporous silica nanoparticles as a FRET donor for monitoring drug delivery. Inorg. Chem. Front. 2017, 4, 468–472.
An, H. Y.; Song, Z. M.; Li, P.; Wang, G.; Ma, B. Q.; Wang, X. P. Development of biofabricated gold nanoparticles for the treatment of alleviated arthritis pain. Appl. Nanosci. 2019, 10, 617–622.
Biao, L. H.; Tan, S. N.; Meng, Q. H.; Gao, J.; Zhang, X. W.; Liu, Z. G.; Fu, Y. J. Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomaterials 2018, 8, 53.
Verma, D.; Sharma, V.; Okram, G. S.; Jain, S. Ultrasound-assisted high-yield multicomponent synthesis of triazolo[1,2-a]indazole-triones using silica-coated ZnO nanoparticles as a heterogeneous catalyst. Green Chem. 2017, 19, 5885–5899.
Hosseinzadeh, S. Z.; Babazadeh, M.; Shahverdizadeh, G. H.; Es’haghi, M.; Hosseinzadeh-Khanmiri, R. Silica encapsulated-gold nanoparticles as a nano-reactor for aerobic oxidation of benzyl alcohols and tandem oxidative A3 coupling reactions in water. Catal. Lett. 2020, 150, 2784–2791.
Brum, L. F. W.; Dos Santos, C.; Zimnoch Santos, J. H.; Brandelli, A. Structured silica materials as innovative delivery systems for the bacteriocin nisin. Food Chem. 2022, 366, 130599.
Zhang, L. P.; Zhou, Y. M.; Shi, G.; Sang, X. X.; Ni, C. H. Preparations of hyperbranched polymer nano micelles and the pH/redox controlled drug release behaviors. Mater. Sci. Eng. C 2017, 79, 116–122.
Li, Y. J.; Hei, M. Y.; Xu, Y. F.; Qian, X. H.; Zhu, W. P. Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int. J. Pharm. 2016, 511, 689–702.
Lv, Y.; Li, J.; Chen, H.; Bai, Y.; Zhang, L. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles as hepatocellular carcinoma-targeted drug carrier. Int. J. Nanomed. 2017, 12, 4361–4370.
de Q. Silveira, G.; Chen, Z. W.; Barry, E. F.; Diroll, B. T.; Lee, B.; Rajh, T.; Rozhkova, E. A.; Laible, P. D.; Fry, H. C. Energy transfer induced by dye encapsulation in a hybrid nanoparticle-purple membrane reversible assembly. Adv. Funct. Mater. 2019, 29, 1904899.
Simoncelli, S.; Makarova, M.; Wardley, W.; Owen, D. M. Toward an axial nanoscale ruler for fluorescence microscopy. ACS Nano 2017, 11, 11762–11767.
Wang, N. N.; Li, J.; He, B. S.; Deng, T.; Yang, J. F.; Li, J. S. Two-photon excitation nanoprobe for DNases activity imaging assay in hepatic ischemia reperfusion injury. Sens. Actuators B Chem. 2019, 298, 126853.
Tamkovich, S. N.; Cherepanova, A. V.; Kolesnikova, E. V.; Rykova, E. Y.; Pyshnyi, D. V.; Vlassov, V. V.; Laktionov, P. P. Circulating DNA and DNase activity in human blood. Ann. N. Y. Acad. Sci. 2006, 1075, 191–196.
Seferos, D. S.; Giljohann, D. A.; Hill, H. D.; Prigodich, A. E.; Mirkin, C. A. Nano-flares: Probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 2007, 129, 15477–15479.
Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.
Liu, B.; Zhou, P.; Wang, K. Y.; Gong, S. H.; Luan, M. M.; Li, N.; Tang, B. Avoiding false positive signals: A powerful and reliable Au-Se dual-color probe. ACS Sens. 2021, 6, 1949–1955.
Qing, Z. H.; Luo, G. Y.; Xing, S. H.; Zou, Z.; Lei, Y. L.; Liu, J. W.; Yang, R. H. Pt–S bond-mediated nanoflares for high-fidelity intracellular applications by avoiding thiol cleavage. Angew. Chem., Int. Ed. 2020, 59, 14044–14048.
He, B. S.; Dong, X. Z. Hierarchically porous Zr-MOFs labelled methylene blue as signal tags for electrochemical patulin aptasensor based on ZnO nano flower. Sens. Actuator, B Chim. 2019, 294, 192–198.
Chen, S.; Liu, P.; Su, K. W.; Li, X.; Qin, Z.; Xu, W.; Chen, J.; Li, C. R.; Qiu, J. F. Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu2O-Au nanocomposites for signal amplification. Biosens. Bioelectron. 2018, 99, 338–345.
Zhang, H. J.; Kou, Y. M.; Li, J. B.; Chen, L.; Mao, Z.; Han, X. X.; Zhao, B.; Ozaki, Y. Nickel nanowires combined with surface-enhanced Raman spectroscopy: Application in label-free detection of cytochrome c-mediated apoptosis. Anal. Chem. 2019, 91, 1213–1216.
Li, N.; Chang, C. Y.; Pan, W.; Tang, B. A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew. Chem. 2012, 124, 7544–7548.
Zhong, L.; Cai, S. X.; Huang, Y. D.; Yin, L. T.; Yang, Y. L.; Lu, C. H.; Yang, H. H. DNA octahedron-based fluorescence nanoprobe for dual tumor-related mRNAs detection and imaging. Anal. Chem. 2018, 90, 12059–12066.
Wang, Y.; Li, Z. H.; Liu, M. S.; Xu, J. J.; Hu, D. H.; Lin, Y. H.; Li, J. H. Multiple-targeted graphene-based nanocarrier for intracellular imaging of mRNAs. Anal. Chim. Acta 2017, 983, 1–8.
Li, C. B.; Chen, P. F.; Khan, I. M.; Wang, Z. P.; Zhang, Y.; Ma, X. Y. Fluorescence-Raman dual-mode quantitative detection and imaging of small-molecule thiols in cell apoptosis with DNA-modified gold nanoflowers. J. Mater. Chem. B 2022, 10, 571–581.
Daniyal, M.; Liu, Y. B.; Yang, Y. P.; Xiao, F.; Fan, J. L.; Yu, H. H.; Qiu, Y. X.; Liu, B.; Wang, W.; Yuhui, Q. Anti-gastric cancer activity and mechanism of natural compound “Heilaohulignan C” isolated from Kadsura coccinea. Phytother. Res. 2021, 35, 3977–3987.
Kaparekar, P. S.; Poddar, N.; Anandasadagopan, S. K. Fabrication and characterization of Chrysin—A plant polyphenol loaded alginate-chitosan composite for wound healing application. Colloids Surf. B Biointerfaces 2021, 206, 111922.
Kim, E. M.; Jung, C. H.; Kim, J.; Hwang, S. G.; Park, J. K.; Um, H. D. The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins. Cancer Res. 2017, 77, 3092–3100.
Follis, A. V.; Llambi, F.; Merritt, P.; Chipuk, J. E.; Green, D. R.; Kriwacki, R. W. Pin1-induced proline isomerization in cytosolic p53 mediates BAX activation and apoptosis. Mol. Cell 2015, 59, 677–684.
Xu, F. B.; Li, Y. F.; Cao, Z.; Zhang, J.; Huang, W. Y. AFB1-induced mice liver injury involves mitochondrial dysfunction mediated by mitochondrial biogenesis inhibition. Ecotoxicol. Environ. Saf. 2021, 216, 112213.