Journal Home > Volume 16 , Issue 4

Given the challenges brought by the shortage of freshwater resources, solar water evaporation has been regarded as one of the most promising technologies for harnessing abundant sunlight to harvest clean water from the sea. Nanostructured metals have attracted extensive attention in solar water evaporation due to their localized surface plasmon resonance effect, but highly porous metallic films with high evaporation efficiency are challenging. Herein, a self-supporting black nanoporous silver (NP-Ag) film was fabricated by dealloying of an extremely dilute Al99Ag1 alloy. The choice of the dilute precursor guarantees the formation of the NP-Ag film with high porosity (96.5%) and low density (0.3703 g·cm–3, even smaller than the lightest metal lithium). The three-dimensional ligament-channel network structure and the nanoscale (14.6 nm) of ligaments enable the NP-Ag film to exhibit good hydrophilicity and broadband absorption over 200‒2,500 nm. More importantly, the solar evaporator based on the NP-Ag film shows efficient solar steam generation, including the efficiency of 92.6%, the evaporation rate of 1.42 kg·m–2·h–1 and good cycling stability under one sun irradiation. Moreover, the NP-Ag film exhibits acceptable seawater desalination property with the ion rejection for Mg2+, Ca2+, K+ and Na+ more than 99.3%. Our findings could provide a new idea and inspiration for the design and fabrication of metal-based photothermal films in real solar evaporation applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanoporous black silver film with high porosity for efficient solar steam generation

Show Author's information Bin Yu1Yan Wang2Ying Zhang1Zhonghua Zhang1( )
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, China
School of Materials Science and Engineering, University of Jinan, West Road of Nan Xinzhuang 336, Jinan 250022, China

Abstract

Given the challenges brought by the shortage of freshwater resources, solar water evaporation has been regarded as one of the most promising technologies for harnessing abundant sunlight to harvest clean water from the sea. Nanostructured metals have attracted extensive attention in solar water evaporation due to their localized surface plasmon resonance effect, but highly porous metallic films with high evaporation efficiency are challenging. Herein, a self-supporting black nanoporous silver (NP-Ag) film was fabricated by dealloying of an extremely dilute Al99Ag1 alloy. The choice of the dilute precursor guarantees the formation of the NP-Ag film with high porosity (96.5%) and low density (0.3703 g·cm–3, even smaller than the lightest metal lithium). The three-dimensional ligament-channel network structure and the nanoscale (14.6 nm) of ligaments enable the NP-Ag film to exhibit good hydrophilicity and broadband absorption over 200‒2,500 nm. More importantly, the solar evaporator based on the NP-Ag film shows efficient solar steam generation, including the efficiency of 92.6%, the evaporation rate of 1.42 kg·m–2·h–1 and good cycling stability under one sun irradiation. Moreover, the NP-Ag film exhibits acceptable seawater desalination property with the ion rejection for Mg2+, Ca2+, K+ and Na+ more than 99.3%. Our findings could provide a new idea and inspiration for the design and fabrication of metal-based photothermal films in real solar evaporation applications.

Keywords: surface plasmon resonance, solar steam generation, seawater desalination, photothermal materials, nanoporous silver

References(73)

[1]

Post, V. E. A.; Groen, J.; Kooi, H.; Person, M.; Ge, S. M.; Edmunds, W. M. Offshore fresh groundwater reserves as a global phenomenon. Nature 2013, 504, 71–78.

[2]

Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

[3]

Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.

[4]

Yan, C. C.; Jin, J. Q.; Wang, J. N.; Zhang, F. F.; Tian, Y. J.; Liu, C. X.; Zhang, F. Q.; Cao, L. C.; Zhou, Y. M.; Han, Q. X. Metal-organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord. Chem. Rev. 2022, 468, 214595.

[5]

Schlosser, C. A.; Strzepek, K.; Gao, X.; Fant, C.; Blanc, É.; Paltsev, S.; Jacoby, H.; Reilly, J.; Gueneau, A. The future of global water stress: An integrated assessment. Earth's Fut. 2014, 2, 341–361.

[6]

Kim, S. J.; Ko, S. H.; Kang, K. H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297–301.

[7]

Bamufleh, H.; Abdelhady, F.; Baaqeel, H. M.; El-Halwagi, M. M. Optimization of multi-effect distillation with brine treatment via membrane distillation and process heat integration. Desalination 2017, 408, 110–118.

[8]

Morris, R. M. The development of the multi-stage flash distillation process: A designer's viewpoint. Desalination 1993, 93, 57–68.

[9]

Shenvi, S. S.; Isloor, A. M.; Ismail, A. F. A review on RO membrane technology: Developments and challenges. Desalination 2015, 368, 10–26.

[10]

Wenten, I. G.; Khoiruddin. Reverse osmosis applications: Prospect and challenges. Desalination 2016, 391, 112–125.

[11]

Zhang, P. H.; Li, J. H.; Chan-Park, M. B. Hierarchical porous carbon for high-performance capacitive desalination of brackish water. ACS Sustainable Chem. Eng. 2020, 8, 9291–9300.

[12]

Huang, X. Y.; Yu, Y. H.; De Llergo, O. L.; Marquez, S. M.; Cheng, Z. D. Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation. RSC Adv. 2017, 7, 9495–9499.

[13]

Wang, Y. C.; Wang, C. Z.; Song, X. J.; Huang, M. H.; Megarajan, S. K.; Shaukat, S. F.; Jiang, H. Q. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. J. Mater. Chem. A 2018, 6, 9874–9881.

[14]

Wang, C. Z.; Wang, Y. C.; Song, X. J.; Huang, M. H.; Jiang, H. Q. A facile and general strategy to deposit polypyrrole on various substrates for efficient solar-driven evaporation. Adv. Sustainable Syst. 2019, 3, 1800108.

[15]

Fan, Y. K.; Bai, W.; Mu, P.; Su, Y. N.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Li, A. Conductively monolithic polypyrrole 3-D porous architecture with micron-sized channels as superior salt-resistant solar steam generators. Sol. Energy Mater. Sol. Cells 2020, 206, 110347.

[16]

Li, J. Y.; Zhou, X.; Mu, P.; Wang, F.; Sun, H. X.; Zhu, Z. Q.; Zhang, J. W.; Li, W. W.; Li, A. Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators. ACS Appl. Mater. Interfaces 2020, 12, 798–806.

[17]

Zhu, G. L.; Xu, J. J.; Zhao, W. L.; Huang, F. Q. Constructing black Titania with unique nanocage structure for solar desalination. ACS Appl. Mater. Interfaces 2016, 8, 31716–31721.

[18]

Ghim, D.; Jiang, Q. S.; Cao, S. S.; Singamaneni, S.; Jun, Y. S. Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. Nano Energy 2018, 53, 949–957.

[19]

Yang, Y. W.; Zhao, H. Y.; Yin, Z. Y.; Zhao, J. Q.; Yin, X. T.; Li, N.; Yin, D. D.; Li, Y. N.; Lei, B.; Du, Y. P. et al. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Mater. Horiz. 2018, 5, 1143–1150.

[20]

Guo, Z. Z.; Chen, Z. H.; Shi, Z. X.; Qian, J. W.; Li, J. H.; Mei, T.; Wang, J. Y.; Wang, X. B.; Shen, P. Stable metallic 1T phase engineering of molybdenum disulfide for enhanced solar vapor generation. Sol. Energy Mater. Sol. Cells 2020, 204, 110227.

[21]

Wang, Q. M.; Jia, F. F.; Huang, A. H.; Qin, Y.; Song, S. X.; Li, Y. M.; Arroyo, M. A. C. MoS2@sponge with double layer structure for high-efficiency solar desalination. Desalination 2020, 481, 114359.

[22]

Zhang, L.; Mu, L.; Zhou, Q. X.; Hu, X. G. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination. Water Res. 2020, 170, 115367.

[23]

Higgins, M. W.; Rahmaan, S. A. R.; Devarapalli, R. R.; Shelke, M. V.; Jha, N. Carbon fabric based solar steam generation for waste water treatment. Solar Energy 2018, 159, 800–810.

[24]

Liu, S.; Huang, C. L.; Luo, X.; Rao, Z. H. High-performance solar steam generation of a paper-based carbon particle system. Appl. Therm. Eng. 2018, 142, 566–572.

[25]

Kou, H.; Liu, Z. X.; Zhu, B.; Macharia, D. K.; Ahmed, S.; Wu, B. H.; Zhu, M. F.; Liu, X. G.; Chen, Z. G. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 2019, 462, 29–38.

[26]

Xia, Y.; Hou, Q. F.; Jubaer, H.; Li, Y.; Kang, Y.; Yuan, S.; Liu, H. Y.; Woo, M. W.; Zhang, L.; Gao, L. et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 2019, 12, 1840–1847.

[27]

Wang, C. B.; Wang, J. L.; Li, Z. T.; Xu, K. Y.; Lei, T.; Wang, W. K. Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency. J. Mater. Chem. A 2020, 8, 9528–9535.

[28]

Wei, W.; Zhu, Y.; Wang, N.; Mei, H.; Yin, S. Photothermal characteristics of novel flexible black silicon for solar thermal receiver. Int. J. Thermophys. 2012, 33, 2179–2184.

[29]

Wang, X. Z.; He, Y. R.; Liu, X.; Cheng, G.; Zhu, J. Q. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 2017, 195, 414–425.

[30]

Zhang, L. L.; Xing, J.; Wen, X. L.; Chai, J. W.; Wang, S. J.; Xiong, Q. H. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale 2017, 9, 12843–12849.

[31]

Zhu, M. W.; Li, Y. J.; Chen, F. J.; Zhu, X. Y.; Dai, J. Q.; Li, Y. F.; Yang, Z.; Yan, X. J.; Song, J. W.; Wang, Y. B. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028.

[32]

Chen, M. J.; Mandal, J.; Ye, Q.; Li, A. J.; Cheng, Q.; Gong, T. Y.; Jin, T. W.; He, Y. R.; Yu, N. F.; Yang, Y. A scalable dealloying technique to create thermally stable plasmonic nickel selective solar absorbers. ACS Appl. Energy Mater. 2019, 2, 6551–6557.

[33]

Yin, K.; Yang, S.; Wu, J. R.; Li, Y. J.; Chu, D. K.; He, J.; Duan, J. A. Femtosecond laser induced robust Ti foam based evaporator for efficient solar desalination. J. Mater. Chem. A 2019, 7, 8361–8367.

[34]

Wang, Z. H.; Liu, Y. M.; Tao, P.; Shen, Q. C.; Yi, N.; Zhang, F. Y.; Liu, Q. L.; Song, C. Y.; Zhang, D.; Shang, W. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 2014, 10, 3234–3239.

[35]

Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768–2774.

[36]

Wu, T.; Li, H. X.; Xie, M. H.; Shen, S.; Wang, W. X.; Zhao, M.; Mo, X. M.; Xia, Y. N. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating. Mater. Today Energy 2019, 12, 129–135.

[37]

Zhang, Y.; Wang, Y.; Yu, B.; Yin, K. B.; Zhang, Z. H. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv. Mater. 2022, 34, 2200108.

[38]

Wang, M. M.; Wang, P.; Zhang, J.; Li, C. P.; Jin, Y. D. A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. ChemSusChem 2019, 12, 467–472.

[39]

Wang, H. L.; Miao, L.; Tanemura, S. Morphology control of Ag polyhedron nanoparticles for cost-effective and fast solar steam generation. Sol. RRL 2017, 1, 1600023.

[40]

Chen, J. X.; Feng, J.; Li, Z. W.; Xu, P. P.; Wang, X. J.; Yin, W. W.; Wang, M. Z.; Ge, X. W.; Yin, Y. D. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 2019, 19, 400–407.

[41]

Qiao, P. Z.; Wu, J. X.; Li, H. Z.; Xu, Y. C.; Ren, L. P.; Lin, K.; Zhou, W. Plasmon Ag-promoted solar-thermal conversion on floating carbon cloth for seawater desalination and sewage disposal. ACS Appl. Mater. Interfaces 2019, 11, 7066–7073.

[42]

Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

[43]

Chang, C.; Yang, C.; Liu, Y. M.; Tao, P.; Song, C. Y.; Shang, W.; Wu, J. B.; Deng, T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Appl. Mater. Interfaces 2016, 8, 23412–23418.

[44]

Huang, J.; He, Y. R.; Wang, L.; Huang, Y. M.; Jiang, B. C. Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Convers. Manag. 2017, 132, 452–459.

[45]

Li, H. R.; He, Y. R.; Liu, Z. Y.; Jiang, B. C.; Huang, Y. M. A flexible thin-film membrane with broadband Ag@TiO2 nanoparticle for high-efficiency solar evaporation enhancement. Energy 2017, 139, 210–219.

[46]

Liu, C. X.; Huang, J. F.; Hsiung, C. E.; Tian, Y.; Wang, J. J.; Han, Y.; Fratalocchi, A. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Adv. Sustainable Syst. 2017, 1, 1600013.

[47]

Liu, Z. P.; Yang, Z. J.; Huang, X. C.; Xuan, C. Y.; Xie, J. H.; Fu, H. D.; Wu, Q. X.; Zhang, J. M.; Zhou, X. C.; Liu, Y. Z. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. J. Mater. Chem. A 2017, 5, 20044–20052.

[48]

Liu, Y. Z.; Liu, Z. P.; Huang, Q. C.; Liang, X. C.; Zhou, X. C.; Fu, H. D.; Wu, Q. X.; Zhang, J. M.; Xie, W. A high-absorption and self-driven salt-resistant black gold nanoparticle-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination. J. Mater. Chem. A 2019, 7, 2581–2588.

[49]

Yu, S. T.; Zhang, Y.; Duan, H. Z.; Liu, Y. M.; Quan, X. J.; Tao, P.; Shang, W.; Wu, J. B.; Song, C. Y.; Deng, T. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci. Rep. 2015, 5, 13600.

[50]

Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

[51]

Liu, Y.; Lou, J. W.; Ni, M. T.; Song, C. Y.; Wu, J. B.; Dasgupta, N. P.; Tao, P.; Shang, W.; Deng, T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Appl. Mater. Interfaces 2016, 8, 772–779.

[52]

Fang, J.; Liu, Q. L.; Zhang, W.; Gu, J. J.; Su, Y. S.; Su, H. L.; Guo, C. P.; Zhang, D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. J. Mater. Chem. A 2017, 5, 17817–17821.

[53]

Chen, M. L.; Wu, Y. F.; Song, W. X.; Mo, Y. C.; Lin, X. K.; He, Q.; Guo, B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale 2018, 10, 6186–6193.

[54]

McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 2016, 46, 263–286.

[55]

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

[56]

Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight metallic microlattices. Science 2011, 334, 962–965.

[57]

Prieto, P.; Nistor, V.; Nouneh, K.; Oyama, M.; Abd-Lefdil, M.; Díaz, R. XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 2012, 258, 8807–8813.

[58]

Fang, R. M.; He, M.; Huang, H. B.; Feng, Q. Y.; Ji, J.; Zhan, Y. J.; Leung, D. Y. C.; Zhao, W. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature. Chemosphere 2018, 213, 235–243.

[59]

Tang, X. F.; Chen, J. L.; Li, Y. G.; Li, Y.; Xu, Y. D.; Shen, W. J. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chem. Eng. J. 2006, 118, 119–125.

[60]

Alshehri, A. H.; Mistry, K.; Nguyen, V. H.; Ibrahim, K. H.; Muñoz-Rojas, D.; Yavuz, M.; Musselman, K. P. Quantum-tunneling metal-insulator-metal diodes made by rapid atmospheric pressure chemical vapor deposition. Adv. Funct. Mater. 2019, 29, 1805533.

[61]

Zhao, Y. J.; You, D. Y.; Yang, W. T.; Yu, H.; Pan, Q. H.; Song, S. Y. Cobalt nanoparticle-carbon nanoplate as the solar absorber of a wood aerogel evaporator for continuously efficient desalination. Environ. Sci. Water Res. Technol. 2022, 8, 151–161.

[62]

Liang, J.; Liu, H. Z.; Yu, J. Y.; Zhou, L.; Zhu, J. Plasmon-enhanced solar vapor generation. Nanophotonics 2019, 8, 771–786.

[63]

Jalas, D.; Canchi, R.; Petrov, A. Y.; Lang, S.; Shao, L.; Weissmüller, J.; Eich, M. Effective medium model for the spectral properties of nanoporous gold in the visible. Appl. Phys. Lett. 2014, 105, 241906.

[64]

Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

[65]

Kim, W. J.; Taya, M.; Nguyen, M. N. Electrical and thermal conductivities of a silver flake/thermosetting polymer matrix composite. Mech. Mater. 2009, 41, 1116–1124.

[66]
World Health Organization (WHO). Safe Drinking-Water from Desalination. Geneva, Switzerland: WHO, 2011.
[67]

Xiao, Y. Y.; Wang, X.; Li, C. X.; Peng, H.; Zhang, T. Q.; Ye, M. M. A salt-rejecting solar evaporator for continuous steam generation. J. Environ. Chem. Eng. 2021, 9, 105010.

[68]

Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

[69]

Graf, M.; Jalas, D.; Weissmüller, J.; Petrov, A. Y.; Eich, M. Surface-to-volume ratio drives photoelelectron injection from nanoscale gold into electrolyte. ACS Catal. 2019, 9, 3366–3374.

[70]

Chala, T. F.; Wu, C. M.; Chou, M. H.; Guo, Z. L. Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Appl. Mater. Interfaces 2018, 10, 28955–28962.

[71]

Shang, M. Y.; Li, N.; Zhang, S. D.; Zhao, T. T.; Zhang, C.; Liu, C.; Li, H. F.; Wang, Z. Y. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Appl. Energy Mater. 2018, 1, 56–61.

[72]

Zhang, W.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Liu, R. P.; Qu, J. H. Capillary-flow-optimized heat localization induced by an air-enclosed three-dimensional hierarchical network for elevated solar evaporation. ACS Appl. Mater. Interfaces 2019, 11, 9974–9983.

[73]

Song, C. Y.; Hao, L.; Zhang, B. Y.; Dong, Z. Y.; Tang, Q. Q.; Min, J. K.; Zhao, Q.; Niu, R.; Gong, J.; Tang, T. High-performance solar vapor generation of Ni/carbon nanomaterials by controlled carbonization of waste polypropylene. Sci. China Mater. 2020, 63, 779–793.

File
12274_2022_5068_MOESM1_ESM.pdf (5.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 June 2022
Revised: 18 September 2022
Accepted: 19 September 2022
Published: 30 September 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 51871133), the Taishan Scholar Foundation of Shandong Province, the Key Research and Development Program of Shandong Province (No. 2021ZLGX01), and the program of Jinan Science and Technology Bureau (No. 2019GXRC001). The authors also thank the assistance from Prof. Kuibo Yin for TEM characterization.

Return