Journal Home > Volume 16 , Issue 4

Formation of plasmonic structure in closely packed assemblies of metallic nanoparticles (NPs) is essential for various applications in sensing, renewable energy, authentication, catalysis, and metamaterials. Herein, a surface-enhanced Raman scattering (SERS) substrate is fabricated for trace detection with ultrahigh sensitivity and stability. The SERS substrate is constructed from a simple yet robust strategy through in situ growth patterned assemblies of Au NPs based on a polymer brush templated synthesis strategy. Benefiting from the dense and uniform distribution of Au NPs, the resulting Au plasmonic nanostructure demonstrates a very strong SERS effect, while the outer polymer brush could restrict the excessive growth of Au NPs and the patterned design could achieve uniform distribution of Au NPs. As results, an ultra-low limit of detection (LOD) of 10−15 M, which has never been successfully detected in other work, is determined for 4-acetamidothiophenol (4-AMTP) molecules and the Raman signals in the random region show good signal homogeneity with a low relative standard deviation (RSD) of 7.2%, indicating great sensitivity and reliability as a SERS substrate. The LOD values of such Au plasmonic nanostructures for methylene blue, thiram, and R6G molecules can also reach as low as 10−10 M, further indicating that the substrate has a wide range of applicability for SERS detection. With the help of finite difference time domain simulations (FDTD) calculation, the electric field distribution of the Au plasmonic nanostructures is simulated, which quantitatively matches the experimental observations. Moreover, the Au plasmonic nanostructures show good shelf stability for at least 10 months of storage in an ambient environment, indicating potentials for practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Templated synthesis of patterned gold nanoparticle assemblies for highly sensitive and reliable SERS substrates

Show Author's information Jianping Peng1,§Peijiang Liu1,2,§Yutong Chen1Zi-Hao Guo1Yanhui Liu3( )Kan Yue1( )
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
National Key Laboratory for Reliability Physics and Its Application Technology of Electrical Component, the 5th Electronics Research Institute of the Ministry of Information Industry, Guangzhou 510610, China
College of Textiles & Clothing, Laboratory of New Fiber Materials and Modern Textile, State Key laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266000, China

§ Jianping Peng and Peijiang Liu contributed equally to this work.

Abstract

Formation of plasmonic structure in closely packed assemblies of metallic nanoparticles (NPs) is essential for various applications in sensing, renewable energy, authentication, catalysis, and metamaterials. Herein, a surface-enhanced Raman scattering (SERS) substrate is fabricated for trace detection with ultrahigh sensitivity and stability. The SERS substrate is constructed from a simple yet robust strategy through in situ growth patterned assemblies of Au NPs based on a polymer brush templated synthesis strategy. Benefiting from the dense and uniform distribution of Au NPs, the resulting Au plasmonic nanostructure demonstrates a very strong SERS effect, while the outer polymer brush could restrict the excessive growth of Au NPs and the patterned design could achieve uniform distribution of Au NPs. As results, an ultra-low limit of detection (LOD) of 10−15 M, which has never been successfully detected in other work, is determined for 4-acetamidothiophenol (4-AMTP) molecules and the Raman signals in the random region show good signal homogeneity with a low relative standard deviation (RSD) of 7.2%, indicating great sensitivity and reliability as a SERS substrate. The LOD values of such Au plasmonic nanostructures for methylene blue, thiram, and R6G molecules can also reach as low as 10−10 M, further indicating that the substrate has a wide range of applicability for SERS detection. With the help of finite difference time domain simulations (FDTD) calculation, the electric field distribution of the Au plasmonic nanostructures is simulated, which quantitatively matches the experimental observations. Moreover, the Au plasmonic nanostructures show good shelf stability for at least 10 months of storage in an ambient environment, indicating potentials for practical applications.

Keywords: surface-enhanced Raman scattering, polymer brush, plasmonic nanostructures, templated synthesis, patterned Au nanostructures

References(54)

[1]

Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem., Int. Ed. 2014, 53, 4756–4795.

[2]

Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

[3]

Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20.

[4]

Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.

[5]

Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576–1599.

[6]

Moskovits, M. Surface selection rules. J. Chem. Phys. 1982, 77, 4408–4416.

[7]

Philpott, M. R. Effect of surface plasmons on transitions in molecules. J. Chem. Phys. 1975, 62, 1812–1817.

[8]

Von Maltzahn, G.; Centrone, A.; Park, J. H.; Ramanathan, R.; Sailor, M. J.; Hatton, T. A.; Bhatia, S. N. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 2009, 21, 3175–3180.

[9]

Pham, X. H.; Hahm, E.; Kim, T. H.; Kim, H. M.; Lee, S. H.; Lee, S. C.; Kang, H.; Lee, H. Y.; Jeong, D. H.; Choi, H. S. et al. Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res. 2020, 13, 3338–3346.

[10]

Karthick Kannan, P.; Shankar, P.; Blackman, C.; Chung, C. H. Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 2019, 31, 1803432.

[11]

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

[12]

Kruszewskh, S.; Skonieczny, J. Roughness effects in surface enhanced Raman scattering-evidence for electromagnetic and charge transfer enhancement mechanism. Acta Phys. Pol. A 1991, 80, 611–620.

[13]

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

[14]

Chen, G.; Gibson, K. J.; Liu, D.; Rees, H. C.; Lee, J. H.; Xia, W. W.; Lin, R. Q.; Xin, H. L.; Gang, O.; Weizmann, Y. Regioselective surface encoding of nanoparticles for programmable self-assembly. Nat. Mater. 2019, 18, 169–174.

[15]

Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.

[16]

Constantino, C. J. L.; Lemma, T.; Antunes, P. A.; Aroca, R. Single-molecule detection using surface-enhanced resonance Raman scattering and langmuir-blodgett monolayers. Anal. Chem. 2001, 73, 3674–3678.

[17]

Moskovits, M. Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 2013, 15, 5301–5311.

[18]

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

[19]

Yang, M.; Alvarez-Puebla, R.; Kim, H. S.; Aldeanueva-Potel, P.; Liz-Marzán, L. M.; Kotov, N. A. SERS-active gold lace nanoshells with built-in hotspots. Nano Lett. 2010, 10, 4013–4019.

[20]

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

[21]

Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

[22]

Yao, X.; Jiang, S.; Luo, S. S.; Liu, B. W.; Huang, T. X.; Hu, S.; Zhu, J. F.; Wang, X.; Ren, B. Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition. ACS Appl. Mater. Interfaces 2020, 12, 36505–36512.

[23]

Pekdemir, S.; Torun, I.; Sakir, M.; Ruzi, M.; Rogers, J. A.; Onses, M. S. Chemical funneling of colloidal gold nanoparticles on printed arrays of end-grafted polymers for plasmonic applications. ACS Nano 2020, 14, 8276–8286.

[24]

Xie, L. P.; Zeng, H.; Zhu, J. X.; Zhang, Z. L.; Sun, H. B.; Xia, W.; Du, Y. N. State of the art in flexible SERS sensors toward label-free and onsite detection: From design to applications. Nano Res. 2022, 15, 4374–4394.

[25]

Kim, J.; Yoo, S.; Kim, J. M.; Choi, S.; Kim, J.; Park, S. J.; Park, D.; Nam, J. M.; Park, S. Synthesis and single-particle surface-enhanced Raman scattering study of plasmonic tripod nanoframes with Y-shaped hot-zones. Nano Lett. 2020, 20, 4362–4369.

[26]

Yoo, S.; Lee, J.; Kim, J.; Kim, J. M.; Haddadnezhad, M.; Lee, S.; Choi, S.; Park, D.; Nam, J. M.; Park, S. Silver double nanorings with circular hot zone. J. Am. Chem. Soc. 2020, 142, 12341–12348.

[27]

Fan, Z. X.; Huang, X.; Tan, C. L.; Zhang, H. Thin metal nanostructures: Synthesis, properties and applications. Chem. Sci. 2015, 6, 95–111.

[28]

Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 2013, 25, 2678–2685.

[29]

Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N. D.; Wolf, H. Nanoparticle printing with single-particle resolution. Nat. Nanotechnol. 2007, 2, 570–576.

[30]

Hanske, C.; Müller, M. B.; Bieber, V.; Tebbe, M.; Jessl, S.; Wittemann, A.; Fery, A. The role of substrate wettability in nanoparticle transfer from wrinkled elastomers: Fundamentals and application toward hierarchical patterning. Langmuir 2012, 28, 16745–16750.

[31]

Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible tuning of visible wavelength surface lattice resonances in self-assembled hybrid monolayers. Adv. Opt. Mater. 2017, 5, 1600971.

[32]

Zengin, A.; Tamer, U.; Caykara, T. SERS detection of polyaromatic hydrocarbons on a β-cyclodextrin containing polymer brush. J. Raman Spectrosc. 2018, 49, 452–461.

[33]

Sheng, W. B.; Li, W.; Tan, D. W.; Zhang, P. P.; Zhang, E.; Sheremet, E.; Schmidt, B. V. K. J.; Feng, X. L.; Rodriguez, R. D.; Jordan, R. et al. Polymer brushes on graphitic carbon nitride for patterning and as a SERS active sensing layer via incorporated nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 9797–9805.

[34]

Liu, P. J.; Peng, J. P.; Chen, Y. T.; Liu, M.; Tang, W.; Guo, Z. H.; Yue, K. A general and robust strategy for in-situ templated synthesis of patterned inorganic nanoparticle assemblies. Giant 2021, 8, 100076.

[35]

Narupai, B.; Page, Z. A.; Treat, N. J.; McGrath, A. J.; Pester, C. W.; Discekici, E. H.; Dolinski, N. D.; Meyers, G. F.; de Alaniz, J. R.; Hawker, C. J. Simultaneous preparation of multiple polymer brushes under ambient conditions using microliter volumes. Angew. Chem., Int. Ed. 2018, 57, 13433–13438.

[36]

Treat, N. J.; Sprafke, H.; Kramer, J. W.; Clark, P. G.; Barton, B. E.; Read de Alaniz, J.; Fors, B. P.; Hawker, C. J. Metal-free atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 16096–16101.

[37]

Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

[38]

Discekici, E. H.; Anastasaki, A.; Read de Alaniz, J.; Hawker, C. J. Evolution and future directions of metal-free atom transfer radical polymerization. Macromolecules 2018, 51, 7421–7434.

[39]

Paripovic, D.; Klok, H. A. Polymer brush guided formation of thin gold and palladium/gold bimetallic films. ACS Appl. Mater. Interfaces 2011, 3, 910–917.

[40]

He, Y. J.; Yoon, Y. J.; Harn, Y. W.; Biesold-McGee, G. V.; Liang, S.; Lin, C. H.; Tsukruk, V. V.; Thadhani, N.; Kang, Z. T.; Lin, Z. Q. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Sci. Adv. 2019, 5, eaax4424.

[41]

Pang, S.; Yang, T. X.; He, L. L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. Trends Analyt. Chem. 2016, 85, 73–82.

[42]

Pang, X. C.; Zhao, L.; Han, W.; Xin, X. K.; Lin, Z. Q. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 2013, 8, 426–431.

[43]

Matyjaszewski, K.; Xia, J. H. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921–2990.

[44]

Kleinman, S. L.; Frontiera, R. R.; Henry, A. I.; Dieringer, J. A.; Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013, 15, 21–36.

[45]

Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J.; Nordlander, P. Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2008, 2, 707–718.

[46]

Jung, K.; Hahn, J.; In, S.; Bae, Y.; Lee, H.; Pikhitsa, P. V.; Ahn, K.; Ha, K.; Lee, J. K.; Park, N. et al. Hotspots: Hotspot-engineered 3D multipetal flower assemblies for surface-enhanced Raman spectroscopy (Adv. Mater. 34/2014). Adv. Mater. 2014, 26, 5923.

[47]

Dick, S.; Konrad, M. P.; Lee, W. W. Y.; McCabe, H.; McCracken, J. N.; Rahman, T. M. D.; Stewart, A.; Xu, Y. K.; Bell, S. E. J. Surface-enhanced Raman spectroscopy as a probe of the surface chemistry of nanostructured materials. Adv. Mater. 2016, 28, 5705–5711.

[48]

Zhang, Y. L.; Li, X. K.; Xue, B.; Kong, X. G.; Liu, X. M.; Tu, L. P.; Chang, Y. L. A facile and general route to synthesize silica-coated SERS tags with the enhanced signal intensity. Sci. Rep. 2015, 5, 14934.

[49]

Xie, J.; Li, L. Y.; Khan, I. M.; Wang, Z. P.; Ma, X. Y. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 231, 118104.

[50]

Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence. Anal. Chem. 2005, 77, 3261–3266.

[51]

Markel, V. A.; Shalaev, V. M.; Stechel, E. B.; Kim, W.; Armstrong, R. L. Small-particle composites. I. Linear optical properties. Phys. Rev. B 1996, 53, 2425–2436.

[52]

Poliakov, E. Y.; Shalaev, V. M.; Markel, V. A.; Botet, R. Enhanced Raman scattering from self-affine thin films. Opt. Lett. 1996, 21, 1628–1630.

[53]

Jung, L. S.; Campbell, C. T. Sticking probabilities in adsorption of alkanethiols from liquid ethanol solution onto gold. J. Phys. Chem. B 2000, 104, 11168–11178.

[54]

Somorjai, G. A.; Mujumdar, A. S. Introduction to surface chemistry and catalysis. Drying Technol. 1995, 13, 507–508.

File
12274_2022_5064_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 August 2022
Revised: 15 September 2022
Accepted: 17 September 2022
Published: 29 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21905097, 21805091, 21774038, and 91856128), the China Postdoctoral Science Foundation (No. L1190440), Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices (No. 2019B121203003), the Pearl River Talents Scheme (No. 2016ZT06C322), and State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University, No. K2019-02).

Return