AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation

Shubin Fu§Dizhou Liu§Yuanpeng Deng§Jingran GuoHan ZhaoJian ZhouPengyu ZhangHongxuan YuShixuan DangJianing ZhangHui Li( )Xiang Xu( )
Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China

§ Shubin Fu, Dizhou Liu, and Yuanpeng Deng contributed equally to this work.

Show Author Information

Graphical Abstract

Carbonaceous ceramic nanofibrous aerogels achieve ultralow thermal conductivity at high temperatures due to thermal radiation opacification of rich carbon content in two-phase ceramic matrix. This study comprehensively investigates the thermal stability and thermal insulation performance of carbonaceous ceramic aerogels fabricated by far-field-electrospinning, paving the way toward design and fabrication of high-performance thermal insulation materials.

Abstract

Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity (κ) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantially reduce the thermal radiation heat transfer without compromising the ultralow solid conduction. However, the oxidation resistance of embedded carbon species still remains inadequate to prevent thermal etching at high temperatures. Herein, we report a carbonaceous design and synthesis of ceramic nanofibrous aerogels with amorphous carbon embedded in the yttrium-stabilized zircon nanofibers to achieve a high-temperature thermal superinsulating performance with robust thermomechanical stability. The aerogels display one of the lowest κ of 95 mW·m−1·K−1 at 1,000 °C in air among ultralight material family, as well as robust mechanical flexibility with up to 95% compressive strain, 30% non-linear fracture strain, and 99% bending strain, and high thermal stability with ultralow strength degradation less than 1% after sharp thermal shocks (240 °C·s−1) and working temperature up to 1,200 °C. The combined high-temperature thermal superinsulating and thermomechanical properties offer an attractive material system for robust thermal insulation under extreme conditions.

Electronic Supplementary Material

Video
12274_2022_5063_MOESM1_ESM.mp4
12274_2022_5063_MOESM2_ESM.mp4
12274_2022_5063_MOESM3_ESM.mp4
12274_2022_5063_MOESM4_ESM.mp4
12274_2022_5063_MOESM5_ESM.mp4
12274_2022_5063_MOESM6_ESM.mp4
Download File(s)
12274_2022_5063_MOESM1_ESM.pdf (3.9 MB)

References

[1]

Kistler, S. S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741–741.

[2]

Zu, G. Q.; Shen, J.; Zou, L. P.; Wang, W. Q.; Lian, Y.; Zhang, Z. H.; Du, A. Nanoengineering super heat-resistant, strong alumina aerogels. Chem. Mater. 2013, 25, 4757–4764.

[3]

Si, Y.; Wang, X. Q.; Dou, L. Y.; Yu, J. Y.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925.

[4]

Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.

[5]

Xu, X.; Fu, S. B.; Guo, J. R.; Li, H.; Huang, Y.; Duan, X. F. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 2021, 42, 162–177.

[6]

Zou, W. B.; Wang, X. D.; Wu, Y.; Zou, L. P.; Zu, G. Q.; Chen, D.; Shen, J. Opacifier embedded and fiber reinforced alumina-based aerogel composites for ultra-high temperature thermal insulation. Ceram. Int. 2019, 45, 644–650.

[7]

Hüsing, N.; Schubert, U. Aerogels-airy materials: Chemistry, structure, and properties. Angew. Chem., Int. Ed. 1998, 37, 22–45.

[8]

Zhang, Q. Q.; Lin, D.; Deng, B. W.; Xu, X.; Nian, Q.; Jin, S. Y.; Leedy, K. D.; Li, H.; Cheng, G. J. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv. Mater. 2017, 29, 1605506.

[9]

Xu, X.; Zhang, Q. Q.; Yu, Y. K.; Chen, W. L.; Hu, H.; Li, H. Naturally dried graphene aerogels with superelasticity and tunable poisson’s ratio. Adv. Mater. 2016, 28, 9223–9230.

[10]

Zhang, M.; Wang, Y.; Zhang, Y. Y.; Song, J.; Si, Y.; Yan, J. H.; Ma, C. L.; Liu, Y. T.; Yu, J. Y.; Ding, B. Conductive and elastic TiO2 nanofibrous aerogels: A new concept toward self-supported electrocatalysts with superior activity and durability. Angew. Chem., Int. Ed. 2020, 59, 23252–23260.

[11]
Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook; Springer: New York, 2011.
[12]

Wang, H. L.; Lin, S.; Yang, S.; Yang, X. D.; Song, J. N.; Wang, D.; Wang, H. Y.; Liu, Z. L.; Li, B.; Fang, M. H. et al. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge. Small 2018, 14, 1800258.

[13]

Zhao, S. Y.; Zhang, Z.; Sèbe, G.; Wu, R.; Virtudazo, R. V. R.; Tingaut, P.; Koebel, M. M. Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: Improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 2015, 25, 2326–2334.

[14]

Zhao, S. Y.; Malfait, W. J.; Demilecamps, A.; Zhang, Y. C.; Brunner, S.; Huber, L.; Tingaut, P.; Rigacci, A.; Budtova, T.; Koebel, M. M. Strong, thermally superinsulating biopolymer-silica aerogel hybrids by cogelation of silicic acid with pectin. Angew. Chem., Int. Ed. 2015, 127, 14490–14494.

[15]

Dou, L. Y.; Zhang, X. X.; Cheng, X. T.; Ma, Z. M.; Wang, X. Q.; Si, Y.; Yu, J. Y.; Ding, B. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 2019, 11, 29056–29064.

[16]

Wang, H. L.; Zhang, X.; Wang, N.; Li, Y.; Feng, X.; Huang, Y.; Zhao, C. S.; Liu, Z. L.; Fang, M. H.; Ou, G. et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci. Adv. 2017, 3, e1603170.

[17]

Si, Y.; Yu, J. Y.; Tang, X. M.; Ge, J. L.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802.

[18]

Su, L.; Wang, H. J.; Niu, M.; Fan, X. Y.; Ma, M. B.; Shi, Z. Q.; Guo, S. W. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 2018, 12, 3103–3111.

[19]

Zhang, X. X.; Wang, F.; Dou, L. Y.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2−Al2O3 nanofibrous aerogels with high-temperature resistance over 1,300 °C. ACS Nano 2020, 14, 15616–15625.

[20]

Jia, C.; Li, L.; Liu, Y.; Fang, B.; Ding, H.; Song, J. N.; Liu, Y. B.; Xiang, K. J.; Lin, S.; Li, Z. W. et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 2020, 11, 3732.

[21]

Zeng, X. L.; Ye, L.; Yu, S. H.; Sun, R.; Xu, J. B.; Wong, C. P. Facile preparation of superelastic and ultralow dielectric boron nitride nanosheet aerogels via freeze-casting process. Chem. Mater. 2015, 27, 5849–5855.

[22]

Goni, M.; Yang, J.; Schmidt, A. J. Enhanced thermal transport across monolayer MoS2. Nano Res. 2018, 11, 2173–2180.

[23]

Meador, M. A.; Vivod, S. L.; McCorkle, L.; Quade, D.; Sullivan, R. M.; Ghosn, L. J.; Clark, N.; Capadona, L. A. Reinforcing polymer cross-linked aerogels with carbon nanofibers. J. Mater. Chem. 2008, 18, 1843.

[24]

Randall, J. P.; Meador, M. A. B.; Jana, S. C. Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl. Mater. Interfaces 2011, 3, 613–626.

[25]

Li, L.; Jia, C.; Liu, Y.; Fang, B.; Zhu, W. Q.; Li, X. Y.; Schaefer, L. A.; Li, Z. W.; Zhang, F. S.; Feng, X. N. et al. Nanograin-glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater. Today 2022, 54, 72–82.

[26]

Su, L.; Wang, H. J.; Niu, M.; Dai, S.; Cai, Z. X.; Yang, B. G.; Huyan, H. X.; Pan, X. Q. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 2020, 6, eaay6689.

[27]

Yin, J.; Li, X. M.; Zhou, J. X.; Guo, W. L. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 2013, 13, 3232–3236.

[28]

Su, L.; Li, M. Z.; Wang, H. J.; Niu, M.; Lu, D.; Cai, Z. X. Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 2019, 11, 15795–15803.

[29]

Lu, X.; Arduini-Schuster, M. C.; Kuhn, J.; Nilsson, O.; Fricke, J.; Pekala, R. W. Thermal conductivity of monolithic organic aerogels. Science 1992, 255, 971–972.

[30]

Keppler, H.; Dubrovinsky, L. S.; Narygina, O.; Kantor, I. Optical absorption and radiative thermal conductivity of silicate perovskite to 125 gigapascals. Science 2008, 322, 1529–1532.

[31]

Li, S.; Wang, C. A.; Yang, F. Q.; An, L. N.; So, K.; Li, J. Hollow-grained “voronoi foam” ceramics with high strength and thermal superinsulation up to 1,400 °C. Mater. Today 2021, 46, 35–43.

[32]

Zhang, R. B.; Ye, C. S.; Wang, B. L. Novel Al2O3-SiO2 aerogel/porous zirconia composite with ultra-low thermal conductivity. J. Porous Mater. 2018, 25, 171–178.

[33]

Wei, G. S.; Liu, Y. S.; Zhang, X. X.; Yu, F.; Du, X. Z. Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transf. 2011, 54, 2355–2366.

[34]

Zhao, H. Q.; Liu, J. W.; Dong, M.; Wang, Z. H.; Liu, X. Y. High-temperature stable and hydrophobic boron-nitride-modified silica aerogels for heat insulation materials. Heat Mass Transf. 2021, 57, 1807–1814.

[35]

Zhang, H.; Fang, W. Z.; Wang, X.; Li, Y. M.; Tao, W. Q. Thermal conductivity of fiber and opacifier loaded silica aerogel composite. Int. J. Heat Mass Transf. 2017, 115, 21–31.

[36]

Mulholland, G. W.; Croarkin, C. Specific extinction coefficient of flame generated smoke. Fire Mater. 2000, 24, 227–230.

[37]

Choi, T. J.; Kim, S. H.; Jang, S. P.; Lin, L. N.; Kedzierski, M. A. Aqueous nanofluids containing paraffin-filled MWCNTs for improving effective specific heat and extinction coefficient. Energy 2020, 210, 118523.

[38]

Widmann, J. F.; Duchez, J.; Yang, J. C.; Conny, J. M.; Mulholland, G. W. Measurement of the optical extinction coefficient of combustion-generated aerosol. J. Aerosol Sci. 2005, 36, 283–289.

[39]

Wiener, M.; Reichenauer, G.; Braxmeier, S.; Hemberger, F.; Ebert, H. P. Carbon aerogel-based high-temperature thermal insulation. Int. J. Thermophys. 2009, 30, 1372–1385.

[40]

Liu, H.; Xia, X. L.; Xie, X. Q.; Ai, Q.; Li, D. H. Experiment and identification of thermal conductivity and extinction coefficient of silica aerogel composite. Int. J. Therm. Sci. 2017, 121, 192–203.

[41]

Brukh, R.; Mitra, S. Kinetics of carbon nanotubeoxidation. J. Mater. Chem. 2007, 17, 619–623.

[42]

Illeková, E.; Csomorová, K. Kinetics of oxidation in various forms of carbon. J. Therm. Anal. Calorim. 2005, 80, 103–108.

[43]

Mikkelsen, J. C. Jr. Self-diffusivity of network oxygen in vitreous SiO2. Appl. Phys. Lett. 1984, 45, 1187–1189.

[44]

Kalen, J. D.; Boyce, R. S.; Cawley, J. D. Oxygen tracer diffusion in vitreous silica. J. Am. Ceram. Soc. 1991, 74, 203–209.

[45]

Liu, H.; Zhang, S. C.; Liu, L. F.; Yu, J. Y.; Ding, B. A fluffy dual-network structured nanofiber/net filter enables high-efficiency air filtration. Adv. Funct. Mater. 2019, 29, 1904108.

[46]

Mao, X.; Zhao, L.; Zhang, K.; Wang, Y. Y.; Ding, B. Highly flexible ceramic nanofibrous membranes for superior thermal insulation and fire retardancy. Nano Res. 2022, 15, 2592–2598.

[47]

Zhang, S. C.; Liu, H.; Tang, N.; Ge, J. L.; Yu, J. Y.; Ding, B. Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nat. Commun. 2019, 10, 1458.

[48]

Zan, G. T.; Wu, T.; Zhu, F.; He, P. F.; Cheng, Y. P.; Chai, S. S.; Wang, Y.; Huang, X. F.; Zhang, W. X.; Wan, Y. et al. A biomimetic conductive super-foldable material. Matter 2021, 4, 3232–3247.

[49]

Wertheim, G. K.; Van Attekum, P. T. T. M.; Basu, S. Electronic structure of lithium graphite. Solid State Commun. 1980, 33, 1127–1130.

[50]

Powell, C. J. Recommended Auger parameters for 42 elemental solids. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 1–3.

[51]

Bastl, Z. X-ray photoelectron spectroscopic studies of palladium dispersed on carbon surfaces modified by ion beams and plasmatic oxidation. Collect. Czech. Chem. Commun. 1995, 60, 383–392.

[52]

Tortorelli, P. F.; More, K. L. Effects of high water-vapor pressure on oxidation of silicon carbide at 1, 200 °C. J. Am. Ceram. Soc. 2003, 86, 1249–1255.

[53]

Wang, F.; Dou, L. Y.; Dai, J. W.; Li, Y. Y.; Huang, L. Q.; Si, Y.; Yu, J. Y.; Ding, B. In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem., Int. Ed. 2020, 59, 8285–8292.

[54]

Li, L.; Xu, C. S.; Chang, R. Z.; Yang, C.; Jia, C.; Wang, L.; Song, J. N.; Li, Z. W.; Zhang, F. S.; Fang, B. et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Mater. 2021, 40, 329–336.

[55]

Zhou, X. L.; Feng, Z. Q.; Zhu, L. L.; Xu, J. N.; Miyagi, L.; Dong, H. L.; Sheng, H. W.; Wang, Y. J.; Li, Q.; Ma, Y. M. et al. High-pressure strengthening in ultrafine-grained metals. Nature 2020, 579, 67–72.

[56]

Song, J.; Wang, X. Q.; Yan, J. H.; Yu, J. Y.; Sun, G.; Ding, B. Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 2017, 7, 1636.

[57]

Shan, H. R.; Wang, X. Q.; Shi, F. H.; Yan, J. H.; Yu, J. Y.; Ding, B. Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 2017, 9, 18966–18976.

[58]

Dou, L. Y.; Zhang, X. X.; Shan, H. R.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 2020, 30, 2005928.

[59]

Dong, X. Y.; Si, Y.; Chen, C. J.; Ding, B.; Deng, H. B. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 2021, 15, 12256–12266.

[60]

Zhang, X. Y.; Zhang, Y. F.; Qu, Y. N.; Wu, J. M.; Zhang, S. G.; Yang, J. L. Three-dimensional reticulated, spongelike, resilient aerogels assembled by SiC/Si3N4 nanowires. Nano Lett. 2021, 21, 4167–4175.

[61]

Wang, F.; Dai, J. W.; Huang, L. Q.; Si, Y.; Yu, J. Y.; Ding, B. Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 2020, 14, 8975–8984.

Nano Research
Pages 5047-5055
Cite this article:
Fu S, Liu D, Deng Y, et al. Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation. Nano Research, 2023, 16(4): 5047-5055. https://doi.org/10.1007/s12274-022-5063-2
Topics:
II

801

Views

3

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 24 July 2022
Revised: 16 September 2022
Accepted: 17 September 2022
Published: 25 October 2022
© Tsinghua University Press 2022
Return