Journal Home > Volume 16 , Issue 2

A strategy for fabricating microcrystalline cellulose–Ti3C2Tx (MCC–MXene) nanocomposite films with high relative permittivity, high thermal conductivity, and excellent mechanical properties was developed. The MCC–MXene nanocomposite film was fabricated by casting a solution containing N,N-dimethylacetamide/lithium chloride (DMAc/LiCl)-soluble MCC and DMAc-dispersible MXene nanosheets, followed by humidity control drying. The MXene nanosheets greatly enhanced the permittivity of the nanocomposite films owing to interfacial polarization. Thus, the nanocomposite film with 20 wt.% MXene content achieved a desirable permittivity of 71.4 at 102 Hz (a 770% improvement against that of neat cellulose), while the dielectric loss only increased by 1.8 times (from 0.39 to 0.70). The obtained nanocomposite films with 20 wt.% and 30 wt.% MXene exhibited remarkable in-plane thermal conductivities of 8.523 and 9.668 W∙m−1∙K−1, respectively, owing to the uniform dispersion and self-alignment of the MXene layered structure. Additionally, the uniformly dispersed MXene nanosheets in the MCC network with interfacial interaction (hydrogen bonding) and mechanical entanglement endowed the nanocomposite films with excellent mechanical properties and flexibility. Furthermore, the thermal stability, water resistance, and antibacterial properties of the nanocomposite films were effectively improved with the introduction of MXene. Moreover, using DMAc/LiCl as the solvent system not only improves the compatibility between MCC and MXene but also avoids the problem of easy oxidation of MXene in aqueous systems. With the high stability of the MCC–MXene solution and enhanced properties of the MCC–MXene films, the proposed strategy manifests great potential for fabricating natural biomass-based dielectric materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

“One stone, two birds” solvent system to fabricate microcrystalline cellulose–Ti3C2Tx nanocomposite film as a flexible dielectric and thermally conductive material

Show Author's information Yong-Zhu Yan1Shuwei Li2Sung Soo Park3Wei-Jin Zhang1Jun Seok Lee1Jung Rae Kim2Dong Gi Seong1Chang-Sik Ha1( )
Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Republic of Korea

Abstract

A strategy for fabricating microcrystalline cellulose–Ti3C2Tx (MCC–MXene) nanocomposite films with high relative permittivity, high thermal conductivity, and excellent mechanical properties was developed. The MCC–MXene nanocomposite film was fabricated by casting a solution containing N,N-dimethylacetamide/lithium chloride (DMAc/LiCl)-soluble MCC and DMAc-dispersible MXene nanosheets, followed by humidity control drying. The MXene nanosheets greatly enhanced the permittivity of the nanocomposite films owing to interfacial polarization. Thus, the nanocomposite film with 20 wt.% MXene content achieved a desirable permittivity of 71.4 at 102 Hz (a 770% improvement against that of neat cellulose), while the dielectric loss only increased by 1.8 times (from 0.39 to 0.70). The obtained nanocomposite films with 20 wt.% and 30 wt.% MXene exhibited remarkable in-plane thermal conductivities of 8.523 and 9.668 W∙m−1∙K−1, respectively, owing to the uniform dispersion and self-alignment of the MXene layered structure. Additionally, the uniformly dispersed MXene nanosheets in the MCC network with interfacial interaction (hydrogen bonding) and mechanical entanglement endowed the nanocomposite films with excellent mechanical properties and flexibility. Furthermore, the thermal stability, water resistance, and antibacterial properties of the nanocomposite films were effectively improved with the introduction of MXene. Moreover, using DMAc/LiCl as the solvent system not only improves the compatibility between MCC and MXene but also avoids the problem of easy oxidation of MXene in aqueous systems. With the high stability of the MCC–MXene solution and enhanced properties of the MCC–MXene films, the proposed strategy manifests great potential for fabricating natural biomass-based dielectric materials.

Keywords: Ti3C2Tx, microcrystalline cellulose, flexible dielectric, thermally conductive, N,N-dimethylacetamide/lithium chloride (DMAc/LiCl), compatibility

References(84)

[1]

Li, L.; Cheng, J. S.; Cheng, Y. Y.; Han, T.; Liu, Y.; Zhou, Y.; Zhao, G. H.; Zhao, Y.; Xiong, C. X.; Dong, L. J. et al. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv. Mater. 2021, 33, 2102392.

[2]

Feng, Q. K.; Zhong, S. L.; Pei, J. Y.; Zhao, Y.; Zhang, D. L.; Liu, D. F.; Zhang, Y. X.; Dang, Z. M. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 2022, 122, 3820–3878.

[3]

Luo, H.; Zhou, X. F.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K. C.; Zhang, D.; Bowen, C. R.; Wan, C. Y. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465.

[4]

Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Chen, W. S.; Wu, Y. Q.; Yu, H. P. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 2021, 33, 2000619.

[5]

Sun, Z.; Qu, K. Q.; You, Y.; Huang, Z. H.; Liu, S. X.; Li, J.; Hu, Q.; Guo, Z. H. Overview of cellulose-based flexible materials for supercapacitors. J. Mater. Chem. A 2021, 9, 7278–7300.

[6]

Wang, X. D.; Yao, C. H.; Wang, F.; Li, Z. D. Cellulose-based nanomaterials for energy applications. Small 2017, 13, 1702240.

[7]

Yang, D.; Kong, X. X.; Ni, Y. F.; Gao, D. H.; Yang, B.; Zhu, Y. Y.; Zhang, L. Q. Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105447.

[8]

Zhang, X. H.; Tan, C.; Ma, Y. H.; Wang, F.; Yang, W. T. BaTiO3@carbon/silicon carbide/poly(vinylidene fluoride-hexafluoropropylene) three-component nanocomposites with high dielectric constant and high thermal conductivity. Compos. Sci. Technol. 2018, 162, 180–187.

[9]

He, D. L.; Wang, Y.; Song, S. L.; Liu, S.; Deng, Y. Significantly enhanced dielectric performances and high thermal conductivity in poly(vinylidene fluoride)-based composites enabled by SiC@SiO2 core-shell whiskers alignment. ACS Appl. Mater. Interfaces 2017, 9, 44839–44846.

[10]

Budzalek, K.; Ding, H. J.; Janasz, L.; Wypych-Puszkarz, A.; Cetinkaya, O.; Pietrasik, J.; Kozanecki, M.; Ulanski, J.; Matyjaszewski, K. Star polymer−TiO2 nanohybrids to effectively modify the surface of PMMA dielectric layers for solution processable OFETs. J. Mater. Chem. C 2021, 9, 1269–1278.

[11]

Su, Y. T.; Zhang, W. Q.; Lan, J. L.; Sui, G.; Zhang, H. T.; Yang, X. P. Flexible reduced graphene oxide/polyacrylonitrile dielectric nanocomposite films for high-temperature electronics applications. ACS Appl. Nano Mater. 2020, 3, 7005–7015.

[12]

Yan, Y. Z.; Park, S. S.; Moon, H. R.; Zhang, W. J.; Yuan, S.; Shi, L. Y.; Seong, D. G.; Ha, C. S. Thermally robust zirconia nanorod/polyimide hybrid films as a highly flexible dielectric material. ACS Appl. Nano Mater. 2021, 4, 8217–8230.

[13]

Park, J. H.; Oh, J. Y.; Han, S. W.; Lee, T. I.; Baik, H. K. Low-temperature, solution-processed ZrO2:B thin film: A bifunctional inorganic/organic interfacial glue for flexible thin-film transistors. ACS Appl. Mater. Interfaces 2015, 7, 4494–4503.

[14]

Yang, Y. Y.; Zhao, Y. S.; Liu, J.; Nie, Z. K.; Ma, J.; Hua, M. T.; Zhang, Y. C.; Cai, X. F.; He, X. M. Flexible and transparent high-dielectric-constant polymer films based on molecular ferroelectric-modified poly(vinyl alcohol). ACS Materials Lett. 2020, 2, 453–460.

[15]
Alghamdi, H. M.; Rajeh, A. Synthesis of carbon nanotubes/titanium dioxide and study of its effect on the optical, dielectric, and mechanical properties of polyvinyl alcohol/sodium alginate for energy storage devices. Int. J. Energy Res., in press, https://doi.org/10.1002/er.7578.
[16]

Chen, Y. W.; Liu, Y. H.; Xia, Y. M.; Liu, X. Q.; Qiang, Z.; Yang, J. Y.; Zhang, B. L.; Hu, Z. D.; Wang, Q.; Wu, W. F. et al. Electric field-induced assembly and alignment of silver-coated cellulose for polymer composite films with enhanced dielectric permittivity and anisotropic light transmission. ACS Appl. Mater. Interfaces 2020, 12, 24242–24249.

[17]

Chen, L. M.; Abdalkarim, S. Y. H.; Yu, H. Y.; Chen, X.; Tang, D. P.; Li, Y. Z.; Tam, K. C. Nanocellulose-based functional materials for advanced energy and sensor applications. Nano Res. 2022, 15, 7432–7452.

[18]

Wang, Z. H.; Lee, Y. H.; Kim, S. W.; Seo, J. Y.; Lee, S. Y.; Nyholm, L. Why cellulose-based electrochemical energy storage devices? Adv. Mater. 2021, 33, 2000892.

[19]

Zhang, C. L.; Cha, R. T.; Zhang, P.; Luo, H. Z.; Jiang, X. Y. Cellulosic substrate materials with multi-scale building blocks: Fabrications, properties and applications in bioelectronic devices. Chem. Eng. J. 2022, 430, 132562.

[20]

Lu, J. L.; Hu, S. M.; Li, W. R.; Wang, X. F.; Mo, X. W.; Gong, X. T.; Liu, H.; Luo, W.; Dong, W.; Sima, C. T. et al. A Biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel. ACS Nano 2022, 16, 3744–3755.

[21]

Luo, S. B.; Shen, Y. B.; Yu, S. H.; Wan, Y. J.; Liao, W. H.; Sun. R.; Wong, C. P. Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 2017, 10, 137–144.

[22]

Beaulieu, M. R.; Baral, J. K.; Hendricks, N. R.; Tang, Y. Y.; Briseño, A. L.; Watkins, J. J. Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors. ACS Appl. Mater. Interfaces 2013, 5, 13096–13103.

[23]

Kim, J. O.; Hur, J. S.; Kim, D.; Lee, B.; Jung, J. M.; Kim, H. A.; Chung, U. J.; Nam, S. H.; Hong, Y.; Park, K. S. et al. Network structure modification-enabled hybrid polymer dielectric film with zirconia for the stretchable transistor applications. Adv. Funct. Mater. 2020, 30, 1906647.

[24]

Zhang, D.; Liu, W. W.; Guo, R.; Zhou, K. C.; Luo, H. High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array. Adv. Sci. 2018, 5, 1700512.

[25]

Qian, C.; Zhu, T. W.; Zheng, W. W.; Bei, R. X.; Liu, S. W.; Yu, D. S.; Chi, Z. G.; Zhang, Y.; Xu, J. R. Improving dielectric properties and thermostability of CaCu3Ti4O12/polyimide composites by employing surface hydroxylated CaCu3Ti4O12 particles. ACS Appl. Polym. Mater. 2019, 1, 1263–1271.

[26]

Chen, J. W.; Wang, X. C.; Yu, X. M.; Yao, L. M.; Duan, Z. K.; Fan, Y.; Jiang, Y. W.; Zhou, Y. X.; Pan, Z. B. High dielectric constant and low dielectric loss poly(vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates. J. Mater. Chem. C 2018, 6, 271–279.

[27]

Su, Y. T.; Zhou, M. P.; Sui, G.; Lan, J. L.; Zhang, H. T.; Yang, X. P. Polyvinyl butyral composites containing halloysite nanotubes/reduced graphene oxide with high dielectric constant and low loss. Chem. Eng. J. 2020, 394, 124910.

[28]

Mao, H. J.; Liu, D. F.; Zhang, N.; Huang, T.; Kühnert, I.; Yang, J. H.; Wang, Y. Constructing a microcapacitor network of carbon nanotubes in polymer blends via crystallization-induced phase separation toward high dielectric constant and low loss. ACS Appl. Mater. Interfaces 2020, 12, 26444–26454.

[29]

Tu, S. B.; Jiang, Q.; Zhang, X. X.; Alshareef, H. N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369–3377.

[30]

Mirkhani, S. A.; Zeraati, A. S.; Aliabadian, E.; Naguib, M.; Sundararaj, U. High dielectric constant and low dielectric loss via poly(vinyl alcohol)/Ti3C2Tx MXene nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18599–18608.

[31]

Zeraati, A. S.; Arjmand, M.; Sundararaj, U. Silver nanowire/MnO2 nanowire hybrid polymer nanocomposites: Materials with high dielectric permittivity and low dielectric loss. ACS Appl. Mater. Interfaces 2017, 9, 14328–14336.

[32]

Ma, W. J.; Yang, K.; Wang, H. Y.; Li, H. F. Poly(vinylidene fluoride-co-hexafluoropropylene)-MXene nanosheet composites for microcapacitors. ACS Appl. Nano Mater. 2020, 3, 7992–8003.

[33]

Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Du, Y.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

[34]

Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

[35]

Wang, D. Z.; Wei, H.; Lin, Y.; Jiang, P. K.; Bao, H.; Huang, X. Y. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocomposites via filler−filler interface engineering. Compos. Sci. Technol. 2021, 213, 108953.

[36]

Tu, S. B.; Jiang, Q.; Zhang, J. W.; He, X.; Hedhili, M. N.; Zhang, X. X.; Alshareef, H. N. Enhancement of dielectric permittivity of Ti3C2Tx MXene/polymer composites by controlling flake size and surface termination. ACS Appl. Mater. Interfaces 2019, 11, 27358–27362.

[37]

Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

[38]

Liu, R.; Li, W. H. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 2018, 3, 2609–2617.

[39]

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

[40]

Chen, H. Y.; Ginzburg, V. V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85.

[41]

Zhou, Z. H.; Song, Q. C.; Huang, B. X.; Feng, S. Y.; Lu, C. H. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 2021, 15, 12405–12417.

[42]

Sun, K.; Wang, F.; Yang, W. K.; Liu, H.; Pan, C. F.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Flexible conductive polyimide fiber/MXene composite film for electromagnetic interference shielding and joule heating with excellent harsh environment tolerance. ACS Appl. Mater. Interfaces 2021, 13, 50368–50380.

[43]

Wang, X. Y.; Wang, Z. Y.; Qiu, J. S. Stabilizing MXene by hydration chemistry in aqueous solution. Angew. Chem., Int. Ed. 2021, 60, 26587–26591.

[44]

Doo, S.; Chae, A.; Kim, D.; Oh, T.; Ko, T. Y.; Kim, S. J.; Koh, D. Y.; Koo, C. M. Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures. ACS Appl. Mater. Interfaces 2021, 13, 22855–22865.

[45]

Zhang, Q. X.; Lai, H. R.; Fan, R. Z.; Ji, P. Y.; Fu, X. L.; Li, H. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 2021, 15, 5249–5262.

[46]

Kim, D.; Ko, T. Y.; Kim, H.; Lee, G. H.; Cho, S.; Koo, C. M. Nonpolar organic dispersion of 2D Ti3C2Tx MXene flakes via simultaneous interfacial chemical grafting and phase transfer method. ACS Nano 2019, 13, 13818–13828.

[47]

Iqbal, A.; Hong, J.; Ko, T. Y.; Koo, C. M. Improving oxidation stability of 2D MXenes: Synthesis, storage media, and conditions. Nano Converg. 2021, 8, 9.

[48]

Tang, X. W.; Murali, G.; Lee, H.; Park, S.; Lee, S.; Oh, S. M.; Lee, J.; Ko, T. Y.; Koo, C. M.; Jeong, Y. J. et al. Engineering aggregation-resistant MXene nanosheets as highly conductive and stable inks for all-printed electronics. Adv. Funct. Mater. 2021, 31, 2010897.

[49]

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

[50]

Chen, J. N.; Yuan, X. L.; Lyu, F. L.; Zhong, Q. X.; Hu, H. C.; Pan, Q.; Zhang, Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 1281–1286.

[51]

Wan, Y. Z.; Xiong, P. X.; Liu, J. Z.; Feng, F. F.; Xun, X. W.; Gama, F. M.; Zhang, Q. C.; Yao, F. L.; Yang, Z. W.; Luo, H. L. et al. Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 2021, 15, 8439–8449.

[52]

Xue, Y. J.; Feng, J. B.; Huo, S. Q.; Song, P. A.; Yu, B.; Liu, L.; Wang, H. Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide. Chem. Eng. J. 2020, 397, 125336.

[53]

Halim, J.; Cook, K. M.; Eklund, P.; Rosen, J.; Barsoum, M. W. XPS of cold pressed multilayered and freestanding delaminated 2D thin films of Mo2TiC2Tz and Mo2Ti2C3Tz (MXenes). Appl. Surf. Sci. 2019, 494, 1138–1147.

[54]

Karmakar, K.; Sarkar, P.; Sultana, J.; Kurra, N.; Rao, K. D. M. Layer-by-layer assembly-based heterointerfaces for modulating the electronic properties of Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 2021, 13, 59104–59114.

[55]

Cao, W. T.; Ma, C.; Mao, D. S.; Zhang, J.; Ma, M. G.; Chen, F. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 2019, 29, 1905898.

[56]

French, A. D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896.

[57]

Shin, I.; Postnova, I.; Shchipunov, Y.; Ha, C. S. Transparent regenerated cellulose bionanocomposite film reinforced by exfoliated montmorillonite with polyhedral oligomeric silsesquioxane bearing amino groups. Compos. Interfaces 2021, 28, 653–669.

[58]

Wang, S. R.; Tambraparni, M.; Qiu, J. J.; Tipton, J.; Dean, D. Thermal expansion of graphene composites. Macromolecules 2009, 42, 5251–5255.

[59]

Du, J. H.; Cheng, H. M. The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 2012, 213, 1060–1077.

[60]

Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

[61]

Zhou, Z. H.; Liu, J. Z.; Zhang, X. X.; Tian, D.; Zhan, Z. Y.; Lu, C. H. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040.

[62]

Rana, S. M. S.; Rahman, M. T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J. Y. Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967.

[63]

Deng, Q. H.; Zhou, F. R.; Qin, B.; Feng, Y. F.; Xu, Z. C. Eco-friendly poly(vinyl alcohol)/delaminated V2C MXene high-k nanocomposites with low dielectric loss enabled by moderate polarization and charge density at the interface. Ceram. Int. 2020, 46, 27326–27335.

[64]

Li, W. Y.; Song, Z. Q.; Zhong, J. M.; Qian, J.; Tan, Z. Y.; Wu, X. Y.; Chu, H. Y.; Nie, W.; Ran, X. H. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. J. Mater. Chem. C 2019, 7, 10371–10378.

[65]

Yu, S. Q.; Ding, C. L.; Liu, Y.; Liu, Y.; Zhang, Y.; Luo, H.; Zhang, D.; Chen, S. Enhanced breakdown strength and energy density over a broad temperature range in polyimide dielectrics using oxidized MXenes filler. J. Power Sources 2022, 535, 231415.

[66]

Yin, Y. A.; Zhang, C. G.; Chen, J. S.; Yu, W. C.; Shi, Z. Q.; Xiong, C. X.; Yang, Q. L. Cellulose/BaTiO3 nanofiber dielectric films with enhanced energy density by interface modification with poly(dopamine). Carbohydr. Polym. 2020, 249, 116883.

[67]

Zhang, C. G.; Yin, Y. A.; Yang, Q. L.; Shi, Z. Q.; Hu, G. H.; Xiong, C. X. Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor. ACS Sustain. Chem. Eng. 2019, 7, 10641–10648.

[68]

Wang, F. J.; Wang, M. H.; Shao, Z. Q. Dispersion of reduced graphene oxide with montmorillonite for enhancing dielectric properties and thermal stability of cyanoethyl cellulose nanocomposites. Cellulose 2018, 25, 7143–7152.

[69]

Lao, J. P.; Xie, H. A.; Shi, Z. Q.; Li, G.; Li, B.; Hu, G. H.; Yang, Q. L.; Xiong, C. X. Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength. ACS Sustain. Chem. Eng. 2018, 6, 7151–7158.

[70]

Tao, J.; Cao, S. A. Flexible high dielectric thin films based on cellulose nanofibrils and acid oxidized multi-walled carbon nanotubes. RSC Adv. 2020, 10, 10799–10805.

[71]

Tao, J.; Cao, S. A.; Liu, W.; Deng, Y. L. Facile preparation of high dielectric flexible films based on titanium dioxide and cellulose nanofibrils. Cellulose 2019, 26, 6087–6098.

[72]

Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748–3756.

[73]

Song, N.; Hou, X. S.; Chen, L.; Cui, S. Q.; Shi, L. Y.; Ding, P. A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl. Mater. Interfaces 2017, 9, 17914–17922.

[74]

Song, N.; Cao, D. L.; Luo, X.; Guo, Y. Q.; Gu, J. W.; Ding, P. Aligned cellulose/nanodiamond plastics with high thermal conductivity. J. Mater. Chem. C 2018, 6, 13108–13113.

[75]

Wang, X. W.; Wu, P. Y. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS Appl. Mater. Interfaces 2018, 10, 34311–34321.

[76]

Song, G. C.; Kang, R. Y.; Guo, L. C.; Ali, Z.; Chen, X. Y.; Zhang, Z. Y.; Yan, C.; Lin, C. T.; Jiang, N.; Yu, J. H. Highly flexible few-layer Ti3C2 MXene/cellulose nanofiber heat-spreader films with enhanced thermal conductivity. New J. Chem. 2020, 44, 7186–7193.

[77]

Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Advx. Compos. Hybrid Mater. 2021, 4, 274–285.

[78]

Zhu, Y.; Zhao, X. B.; Peng, Q. Y.; Zheng, H. W.; Xue, F. H.; Li, P. Y.; Xu, Z. H.; He, X. D. Flame-retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy. Nanoscale Adv. 2021, 3, 5683–5693.

[79]

Chu, Q. D.; Lin, H.; Ma, M.; Chen, S.; Shi, Y. Q.; He, H. W.; Wang, X. Cellulose nanofiber/graphene nanoplatelet/MXene nanocomposites for enhanced electromagnetic shielding and high in-plane thermal conductivity. ACS Appl. Nano Mater. 2022, 5, 7217–7227.

[80]

Jiao, E. X.; Wu, K.; Liu, Y. C.; Lu, M. P.; Hu, Z. R.; Chen, B.; Shi, J.; Lu, M. G. Ultrarobust MXene-based laminated paper with excellent thermal conductivity and flame retardancy. Compos. Part A Appl. Sci. Manuf. 2021, 146, 106417.

[81]

Wang, X. F.; Lei, Z. W.; Ma, X. D.; He, G. F.; Xu, T.; Tan, J.; Wang, L. L.; Zhang, X. S.; Qu, L. J.; Zhang, X. J. A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 2022, 430, 132605.

[82]

Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

[83]

Du, H. S.; Parit, M.; Liu, K.; Zhang, M. M.; Jiang, Z. H.; Huang, T. S.; Zhang, X. Y.; Si, C. L. Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl. Mater. Interfaces 2021, 13, 32115–32125.

[84]

Zhang, C.; Liu, R. G.; Xiang, J. F.; Kang, H. L.; Liu, Z. J.; Huang, Y. Dissolution mechanism of cellulose in N, N-Dimethylacetamide/lithium chloride: Revisiting through molecular interactions. J. Phys. Chem. B 2014, 118, 9507–9514.

File
12274_2022_5062_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 June 2022
Revised: 16 September 2022
Accepted: 16 September 2022
Published: 19 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT, Korea (NRF-2021R1I1A3060098; NRF-2021R1I1A3059777). The work was supported by the Brain Korea 21 Plus Program (4199990414196) and the Korea Institute for Advancement of Technology funded by the Ministry of Trade, Industry and Energy (P0017531). Y. Z. Y. was partially supported by the China Scholarship Council (No. 201908260073).

Return