Journal Home > Volume 16 , Issue 2

Untapped thermal energy, especially low-grade heat below 373 K from various sources, namely ambient, industries residual, and non-concentrated solar energy, is abundant and widely accessible. Despite that, there are huge constraints to recycle this valuable low-grade heat using the existing technologies due to the variability of thermal energy output and the small temperature difference between the heat source and environment. Here, a thermal-mechanical-electrical energy conversion (TMEc) system based on the Curie effect and the soft-contact rotary triboelectric nanogenerator (TENG) is developed to recycle thermal energy in the mid-low temperature range. According to the phase transition mechanism between ferromagnetic and paramagnetic, disk-shaped ferromagnetic materials can realize stable rotation under external magnetic and thermal fields, thus activating the operation of TENGs and realizing the conversion of thermal energy and electrical energy. During the steady rotation process, an open-circuit voltage (VOC) of 173 V and a short-circuit current (ISC) of 1.32 µA are measured. We finally obtained a maximum power of 4.45 mW in the actual working conditions, and it successfully charged different capacitors. This work provides a new method for mid-low temperature energy harvesting and thermal energy transformation and broadens the application of TENG in the field of thermal energy recovery.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thermal-mechanical-electrical energy conversion system based on Curie effect and soft-contact rotary triboelectric nanogenerator

Show Author's information Xiaole Cao1,2Xuelian Wei1,2Ruonan Li1ZhongLin Wang1,2,3( )Zhiyi Wu1,2,4( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
CUSTech Institute of Technology, Wenzhou 325024, China

Abstract

Untapped thermal energy, especially low-grade heat below 373 K from various sources, namely ambient, industries residual, and non-concentrated solar energy, is abundant and widely accessible. Despite that, there are huge constraints to recycle this valuable low-grade heat using the existing technologies due to the variability of thermal energy output and the small temperature difference between the heat source and environment. Here, a thermal-mechanical-electrical energy conversion (TMEc) system based on the Curie effect and the soft-contact rotary triboelectric nanogenerator (TENG) is developed to recycle thermal energy in the mid-low temperature range. According to the phase transition mechanism between ferromagnetic and paramagnetic, disk-shaped ferromagnetic materials can realize stable rotation under external magnetic and thermal fields, thus activating the operation of TENGs and realizing the conversion of thermal energy and electrical energy. During the steady rotation process, an open-circuit voltage (VOC) of 173 V and a short-circuit current (ISC) of 1.32 µA are measured. We finally obtained a maximum power of 4.45 mW in the actual working conditions, and it successfully charged different capacitors. This work provides a new method for mid-low temperature energy harvesting and thermal energy transformation and broadens the application of TENG in the field of thermal energy recovery.

Keywords: triboelectric nanogenerator, low-grade thermal energy, Curie effect, thermal energy harvesting

References(48)

[1]

Chen, L. G.; Sun, F. R.; Wu, C. Influence of heat transfer law on the performance of a Carnot engine. Appl. Therm. Eng. 1997, 17, 277–282.

[2]

Şahi̇n, B.; Kodal, A.; Yavuz, H. Maximum power density for an endoreversible Carnot heat engine. Energy 1996, 21, 1219–1225.

[3]

Schierning, G. Bring on the heat. Nat. Energy 2018, 3, 92–93.

[4]

Shaulsky, E.; Boo, C.; Lin, S. H.; Elimelech, M. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat. Environ. Sci. Technol. 2015, 49, 5820–5827.

[5]

Hao, F.; Qiu, P. F.; Tang, Y. S.; Bai, S. Q.; Xing, T.; Chu, H. S.; Zhang, Q. H.; Lu, P.; Zhang, T. S.; Ren, D. D. et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 2016, 9, 3120–3127.

[6]

Yu, B. Y.; Duan, J. J.; Cong, H. J.; Xie, W. K.; Liu, R.; Zhuang, X. Y.; Wang, H.; Qi, B.; Xu, M.; Wang, Z. L. et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 2020, 370, 342–346.

[7]

Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83–85.

[8]

Wang, D. X.; Ling, X.; Peng, H.; Liu, L.; Tao, L. L. Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation. Energy 2013, 50, 343–352.

[9]

Li, T.; Zhang, X.; Lacey, S. D.; Mi, R. Y.; Zhao, X. P.; Jiang, F.; Song, J. W.; Liu, Z. Q.; Chen, G.; Dai, J. Q. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 2019, 18, 608–613.

[10]

Garcia, S. I.; Garcia, R. F.; Carril, J. C.; Garcia, D. I. A review of thermodynamic cycles used in low temperature recovery systems over the last two years. Renew. Sust. Energy Rev. 2018, 81, 760–767.

[11]

Lee, S. W.; Yang, Y.; Lee, H. W.; Ghasemi, H.; Kraemer, D.; Chen, G.; Cui, Y. An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 2014, 5, 3942.

[12]

Straub, A. P.; Yip, N. Y.; Lin, S. H.; Lee, J.; Elimelech, M. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat. Energy 2016, 1, 16090.

[13]

Straub, A. P.; Elimelech, M. Energy efficiency and performance limiting effects in thermo-osmotic energy conversion from low-grade heat. Environ. Sci. Technol. 2017, 51, 12925–12937.

[14]

Shaulsky, E.; Karanikola, V.; Straub, A. P.; Deshmukh, A.; Zucker, I.; Elimelech, M. Asymmetric membranes for membrane distillation and thermo-osmotic energy conversion. Desalination 2019, 452, 141–148.

[15]

Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

[16]

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

[17]

Lee, J. H.; Ryu, H.; Kim, T. Y.; Kwak, S. S.; Yoon, H. J.; Kim, T. H.; Seung, W.; Kim, S. W. Thermally induced strain-coupled highly stretchable and sensitive pyroelectric nanogenerators. Adv. Energy Mater. 2015, 5, 1500704.

[18]

Lallart, M.; Yan, L. J.; Miki, H.; Sebald, G.; Diguet, G.; Ohtsuka, M.; Kohl, M. Heusler alloy-based heat engine using pyroelectric conversion for small-scale thermal energy harvesting. Appl. Energy 2021, 288, 116617.

[19]

Kacem, H.; Dhahri, A.; Sassi, Z.; Seveyrat, L.; Lebrun, L.; Perrin, V.; Dhahri, J. Relaxor characteristics and pyroelectric energy harvesting performance of BaTi0.91Sn0.09O3 ceramic. J. Alloys Compd. 2021, 872, 159699.

[20]

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

[21]

Qin, Y. S.; Wang, Y. S.; Sun, X. Y.; Li, Y. J.; Xu, H.; Tan, Y. S.; Li, Y.; Song, T.; Sun, B. Q. Constant electricity generation in nanostructured silicon by evaporation-driven water flow. Angew. Chem. 2020, 132, 10706–10712.

[22]

Lee, M. S.; Chang, J. W.; Park, K.; Yang, D. R. Energetic and exergetic analyses of a closed-loop pressure retarded membrane distillation (PRMD) for low-grade thermal energy utilization and freshwater production. Desalination 2022, 534, 115799.

[23]

Ding, T. P.; Liu, K.; Li, J.; Xue, G. B.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 2017, 27, 1700551.

[24]

Zhu, L. L.; Gao, M. M.; Peh, C.; K. N.; Wang, X. Q.; Ho, G. W. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 2018, 8, 1702149.

[25]

Kishore, R. A.; Priya, S. A review on low-grade thermal energy harvesting: Materials, methods and devices. Materials 2018, 11, 1433.

[26]

Forman, C.; Muritala, I. K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sust. Energy Rev. 2016, 57, 1568–1579.

[27]

Wang, Z. L. Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

[28]

Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[29]

Zhang, T. T.; Wen, Z.; Liu, Y. N.; Zhang, Z. Y.; Xie, Y. L.; Sun, X. H. Hybridized nanogenerators for multifunctional self-powered sensing: Principles, prototypes, and perspectives. iScience 2020, 23, 101813.

[30]

Xie, L. J.; Zhai, N. N.; Liu, Y. N.; Wen, Z.; Sun, X. H. Hybrid triboelectric nanogenerators: From energy complementation to integration. Research 2021, 2021, 9143762.

[31]

Liu, W. L.; Wang, Z.; Hu, C. G. Advanced designs for output improvement of triboelectric nanogenerator system. Mater. Today 2021, 45, 93–119.

[32]

Wang, H. B.; Han, M. D.; Song, Y.; Zhang, H. X. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy 2021, 81, 105627.

[33]

Sriphan, S.; Vittayakorn, N. Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. J. Sci.: Adv. Mater. Devices 2022, 7, 100461.

[34]

Lone, S. A.; Lim, K. C.; Kaswan, K.; Chatterjee, S.; Fan, K. P.; Choi, D.; Lee, S.; Zhang, H. L.; Cheng, J.; Lin, Z. H. Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy 2022, 99, 107318.

[35]

Jin, X.; Yuan, Z. H.; Shi, Y. P.; Sun, Y. G.; Li, R. N.; Chen, J. H.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Triboelectric nanogenerator based on a rotational magnetic ball for harvesting transmission line magnetic energy. Adv. Funct. Mater. 2022, 32, 2108827.

[36]

Lin, Z. M.; Zhang, B. B.; Zou, H. Y.; Wu, Z. Y.; Guo, H. Y.; Zhang, Y.; Yang, J.; Wang, Z. L. Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy 2020, 68, 104378.

[37]

Wei, X. L.; Zhao, Z. H.; Zhang, C. G.; Yuan, W.; Wu, Z. Y.; Wang, J.; Wang, Z. L. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 2021, 15, 13200–13208.

[38]

Wu, H.; Wang, J. Y.; Wu, Z. Y.; Kang, S. L.; Wei, X. L.; Wang, H. Q.; Luo, H.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines. Adv. Energy Mater. 2022, 12, 2103654.

[39]

Yuan, Z. H.; Wei, X. L.; Jin, X.; Sun, Y. G.; Wu, Z. Y.; Wang, Z. L. Magnetic energy harvesting of transmission lines by the swinging triboelectric nanogenerator. Mater. Today Energy 2021, 22, 100848.

[40]

Lee, D.; Kim, I.; Kim, D. Hybrid tribo-thermoelectric generator for effectively harvesting thermal energy activated by the shape memory alloy. Nano Energy 2021, 82, 105696.

[41]

Li, R. N.; Wei, X. L.; Shi, Y. P.; Yuan, Z. H.; Wang, B. C.; Xu, J. H.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Low-grade heat energy harvesting system based on the shape memory effect and hybrid triboelectric-electromagnetic nanogenerator. Nano Energy 2022, 96, 107106.

[42]

Wei, X. L.; Zhao, Z. H.; Wang, L. F.; Jin, X.; Yuan, Z. H.; Wu, Z. Y.; Wang, Z. L. Energy conversion system based on Curie effect and triboelectric nanogenerator for low-grade heat energy harvesting. Nano Energy 2022, 91, 106652.

[43]

Rodrigues, C.; Pires, A.; Gonçalves, I.; Silva, D.; Oiiveira, J.; Pereira, A.; Ventura, J. Hybridizing triboelectric and thermomagnetic effects: A novel low-grade thermal energy harvesting technology. Adv. Funct. Mater. 2022, 32, 2110288.

[44]

Ibrahim, M.; Jiang, J. X.; Wen, Z.; Sun, X. H. Surface engineering for enhanced triboelectric nanogenerator. Nanoenergy Adv. 2021, 1, 58–80.

[45]

Chen, Y. F.; Gao, Z. Q.; Zhang, F. J.; Wen, Z.; Sun, X. H. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022, 2, 20210112.

[46]

Chouhan, L.; Srivastava, S. K. A comprehensive review on recent advancements in d0 ferromagnetic oxide materials. Mater. Sci. Semicond. Process. 2022, 147, 106768.

[47]

Chen, J. H.; Wei, X. L.; Wang, B. C.; Li, R. N.; Sun, Y. G.; Peng, Y. T.; Wu, Z. Y.; Wang, P.; Wang, Z. L. Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance. Adv. Energy Mater. 2021, 11, 2102106.

[48]

Han, J. J.; Feng, Y. W.; Chen, P. F.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z. L. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming. Adv. Funct. Mater. 2022, 32, 2108580.

Video
12274_2022_5056_MOESM3_ESM.mp4
12274_2022_5056_MOESM4_ESM.mp4
12274_2022_5056_MOESM5_ESM.mp4
12274_2022_5056_MOESM6_ESM.mp4
12274_2022_5056_MOESM7_ESM.mp4
12274_2022_5056_MOESM8_ESM.mp4
File
12274_2022_5056_MOESM1_ESM.pdf (888.6 KB)
12274_2022_5056_MOESM2_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 July 2022
Revised: 06 September 2022
Accepted: 14 September 2022
Published: 08 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Research was supported by the National Natural Science Foundation of China (No. 61503051).

Return