Journal Home > Volume 16 , Issue 2

In-depth understandings of charge carrier transfer dynamics in any artificial catalytic system are of critical importance for the future design of highly efficient photocatalysts. Herein, we synthesized sub-monolayer ZnSe partial-shell coated CdSe/CdS core/shell quantum dots in a controlled fashion. The ZnSe decorated quantum dots were employed as a model catalyst for photogeneration of H2 under light illumination. Both theoretical calculations and experimental results unravel that the growth of ZnSe partial-shell would retard the photogenerated electron transfer, and meanwhile, accelerate the corresponding hole migration process during the H2 photogeneration reaction in the artificial photocatalytic system. As such, the performance of the relevant photocatalytic system can be modulated and optimized, and accordingly, a plausible underlying mechanism is rationalized.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Counterbalancing of electron and hole transfer in quantum dots for enhanced photocatalytic H2 evolution

Show Author's information Ping Wang1,2,3,§( )Wenwu Shi2,4,§Na Jin2Zhenyang Liu2Yongchen Wang5Tong Cai2Katie Hills-Kimball2Hanjun Yang2Xiaotian Yang1,6( )Yongdong Jin3Xinzhong Wang4( )Jing Zhao4Ou Chen2( )
Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, China
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China
Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of the Ministry of Education, Jilin Jianzhu University, Changchun 130118, China

§ Ping Wang and Wenwu Shi contributed equally to this work.

Abstract

In-depth understandings of charge carrier transfer dynamics in any artificial catalytic system are of critical importance for the future design of highly efficient photocatalysts. Herein, we synthesized sub-monolayer ZnSe partial-shell coated CdSe/CdS core/shell quantum dots in a controlled fashion. The ZnSe decorated quantum dots were employed as a model catalyst for photogeneration of H2 under light illumination. Both theoretical calculations and experimental results unravel that the growth of ZnSe partial-shell would retard the photogenerated electron transfer, and meanwhile, accelerate the corresponding hole migration process during the H2 photogeneration reaction in the artificial photocatalytic system. As such, the performance of the relevant photocatalytic system can be modulated and optimized, and accordingly, a plausible underlying mechanism is rationalized.

Keywords: quantum dots, photocatalysis, hydrogen, ZnSe, CdSe/CdS, partial coating

References(58)

[1]

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

[2]

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

[3]

Fan, X. B.; Yu, S.; Hou, B.; Kim, J. M. Quantum dots based photocatalytic hydrogen evolution. Isr. J. Chem. 2019, 59, 762–773.

[4]

Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

[5]

Kandi, D.; Martha, S.; Parida, K. M. Quantum dots as enhancer in photocatalytic hydrogen evolution: A review. Int. J. Hydrogen Energy 2017, 42, 9467–9481.

[6]

Wang, Y.; Ma, Y.; Li, X. B.; Gao, L.; Gao, X. Y.; Wei, X. Z.; Zhang, L. P.; Tung, C. H.; Qiao, L. J.; Wu, L. Z. Unveiling catalytic sites in a typical hydrogen photogeneration system consisting of semiconductor quantum dots and 3d-metal ions. J. Am. Chem. Soc. 2020, 142, 4680–4689.

[7]

Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

[8]

Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

[9]

Ben-Shahar, Y.; Scotognella, F.; Kriegel, I.; Moretti, L.; Cerullo, G.; Rabani, E.; Banin, U. Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nat. Commun. 2016, 7, 10413.

[10]

Liu, M.; Qiao, L. Z.; Dong, B. B.; Guo, S.; Yao, S.; Li, C.; Zhang, Z. M.; Lu, T. B. Photocatalytic coproduction of H2 and industrial chemical over MOF-derived direct Z-scheme heterostructure. Appl. Catal. B: Environ. 2020, 273, 119066.

[11]

Zhong, L. X.; Mao, B. D.; Liu, M.; Liu, M. Y.; Sun, Y. Q.; Song, Y. T.; Zhang, Z. M.; Lu, T. B. Construction of hierarchical photocatalysts by growing ZnIn2S4 nanosheets on Prussian blue analogue-derived bimetallic sulfides for solar co-production of H2 and organic chemicals. J. Energy Chem. 2021, 54, 386–394.

[12]

Guo, S.; Kong, L. H.; Wang, P.; Yao, S.; Lu, T. B.; Zhang, Z. M. Switching excited state distribution of metal-organic framework for dramatically boosting photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202206193.

[13]

Lan, Q.; Jin, S. J.; Yang, B. H.; Zhao, Q.; Si, C. L.; Xie, H. Q.; Zhang, Z. M. Metal-oxo cluster catalysts for photocatalytic water splitting and carbon dioxide reduction. Trans. Tianjin Univ. 2022, 28, 214–225.

[14]

Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173.

[15]

Caputo, C. A.; Gross, M. A.; Lau, V. W.; Cavazza, C.; Lotsch, B. V.; Reisner, E. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst. Angew. Chem., Int. Ed. 2014, 53, 11538–11542.

[16]

Wang, P.; Yang, Q. Q.; Xu, C.; Wang, B.; Wang, H.; Zhang, J. D.; Jin, Y. D. Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution. Nano Res. 2022, 15, 3106–3113.

[17]

Li, Z. J.; Wang, J. J.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Feng, K.; Chen, B.; Tung, C. H.; Wu, L. Z. An exceptional artificial photocatalyst, Nih-CdSe/CdS core/shell hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution. Adv. Mater. 2013, 25, 6613–6618.

[18]

Shemesh, Y.; Macdonald, J. E.; Menagen, G.; Banin, U. Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 1185–1189.

[19]

Wang, F.; Liang, W. J.; Jian, J. X.; Li, C. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water. Angew. Chem., Int. Ed. 2013, 52, 8134–8138.

[20]

Wang, F.; Wang, W. G.; Wang, X. J.; Wang, H. Y.; Tung, C. H.; Wu, L. Z. A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. Angew. Chem., Int. Ed. 2011, 50, 3193–3197.

[21]

Li, Z. J.; Li, X. B.; Wang, J. J.; Yu, S.; Li, C. B.; Tung, C. H.; Wu, L. Z. A robust “artificial catalyst” in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy Environ. Sci. 2013, 6, 465–469.

[22]

Brown, K. A.; Wilker, M. B.; Boehm, M.; Dukovic, G.; King, P. W. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 2012, 134, 5627–5636.

[23]

Huang, J. E.; Mulfort, K. L.; Du, P. W.; Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc. 2012, 134, 16472–16475.

[24]

Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L. Colloidal hybrid heterostructures based on II-VI semiconductor nanocrystals for photocatalytic hydrogen generation. J. Photochem. Photobiol. C:Photochem. Rev. 2014, 19, 52–61.

[25]

Wilker, M. B.; Schnitzenbaumer, K. J.; Dukovic, G. Recent progress in photocatalysis mediated by colloidal II-VI nanocrystals. Isr. J. Chem. 2012, 52, 1002–1015.

[26]

Yuan, Y. C.; Jin, N.; Saghy, P.; Dube, L.; Zhu, H.; Chen, O. Quantum dot photocatalysts for organic transformations. J. Phys. Chem. Lett. 2021, 12, 7180–7193.

[27]

Li, Q. Y.; Zhao, F. J.; Qu, C.; Shang, Q. Y.; Xu, Z. H.; Yu, L.; McBride, J. R.; Lian, T. Q. Two-dimensional morphology enhances light-driven H2 generation efficiency in CdS nanoplatelet-Pt heterostructures. J. Am. Chem. Soc. 2018, 140, 11726–11734.

[28]

Han, G. Q.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587.

[29]

Ben-Shahar, Y.; Scotognella, F.; Waiskopf, N.; Kriegel, I.; Dal Conte, S.; Cerullo, G.; Banin, U. Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods. Small 2015, 11, 462–471.

[30]

Wang, P.; Zhang, J.; He, H. L.; Xu, X. L.; Jin, Y. D. Efficient visible light-driven H2 production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel-sulfur complex. Nanoscale 2014, 6, 13470–13475.

[31]

Amirav, L.; Alivisatos, A. P. Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051–1054.

[32]

Khon, E.; Lambright, K.; Khnayzer, R. S.; Moroz, P.; Perera, D.; Butaeva, E.; Lambright, S.; Castellano, F. N.; Zamkov, M. Improving the catalytic activity of semiconductor nanocrystals through selective domain etching. Nano Lett. 2013, 13, 2016–2023.

[33]

Acharya, K. P.; Khnayzer, R. S.; O’Connor, T.; Diederich, G.; Kirsanova, M.; Klinkova, A.; Roth, D.; Kinder, E.; Imboden, M.; Zamkov, M. The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals. Nano Lett. 2011, 11, 2919–2926.

[34]

Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.

[35]

Soni, U.; Pal, A.; Singh, S.; Mittal, M.; Yadav, S.; Elangovan, R.; Sapra, S. Simultaneous type-I/type-II emission from CdSe/CdS/ZnSe nano-heterostructures. ACS Nano 2014, 8, 113–123.

[36]

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

[37]

Tan, R.; Yuan, Y. C.; Nagaoka, Y.; Eggert, D.; Wang, X. D.; Thota, S.; Guo, P.; Yang, H. R.; Zhao, J.; Chen, O. Monodisperse hexagonal pyramidal and bipyramidal wurtzite CdSe-CdS core–shell nanocrystals. Chem. Mater. 2017, 29, 4097–4108.

[38]

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

[39]

Wang, L.; Nonaka, K.; Okuhata, T.; Katayama, T.; Tamai, N. Quasi-type II carrier distribution in CdSe/CdS core/shell quantum dots with type I band alignment. J. Phys. Chem. C 2018, 122, 12038–12046.

[40]

Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.

[41]

Ca, N. X.; Hien, N. T.; Tan, P. M.; Phan, T. L.; Thanh, L. D.; Do, P. V.; Bau, N. Q.; Lien, V. T. K.; Van, H. T. Tunable dual emission in type-I/type-II CdSe/CdS/ZnSe nanocrystals. J. Alloys Compd. 2019, 791, 144–151.

[42]

Qiao, F.; Kang, R.; Liang, Q. C.; Cai, Y. Q.; Bian, J. M.; Hou, X. Y. Tunability in the optical and electronic properties of ZnSe microspheres via Ag and Mn doping. ACS Omega 2019, 4, 12271–12277.

[43]

Yang, L.; Zhu, J. G.; Xiao, D. Q. Microemulsion-mediated hydrothermal synthesis of ZnSe and Fe-doped ZnSe quantum dots with different luminescence characteristics. RSC Adv. 2012, 2, 8179–8188.

[44]

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

[45]

Chen, D. A.; Zhao, F.; Qi, H.; Rutherford, M.; Peng, X. G. Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor. Chem. Mater. 2010, 22, 1437–1444.

[46]

Ai, Z. Z.; Zhang, K.; Shi, D.; Chang, B.; Shao, Y. L.; Zhang, L.; Wu, Y. Z.; Hao, X. P. Band-matching transformation between CdS and BCNNTs with tunable p-n homojunction for enhanced photocatalytic pure water splitting. Nano Energy 2020, 69, 104408.

[47]

Wróbel, J.; Kurzydłowski, K. J.; Hummer, K.; Kresse, G.; Piechota, J. Calculations of ZnO properties using the Heyd–Scuseria–Ernzerhof screened hybrid density functional. Phys. Rev. B 2009, 80, 155124.

[48]

Luppi, M.; Ossicini, S. Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO2:Beyond the quantum confinement effect. Phys. Rev. B 2005, 71, 035340.

[49]

Liu, J. J. Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: A hybrid DFT study. J. Phys. Chem. C 2015, 119, 28417–28423.

[50]

Zhu, H. M.; Song, N. H.; Lv, H. J.; Hill, C. L.; Lian, T. Q. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 11701–11708.

[51]

Gimbert-Suriñach, C.; Albero, J.; Stoll, T.; Fortage, J.; Collomb, M. N.; Deronzier, A.; Palomares, E.; Llobet, A. Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots. J. Am. Chem. Soc. 2014, 136, 7655–7661.

[52]

Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 2007, 129, 11708–11719.

[53]

He, Y.; Zhang, M.; Shi, J. J.; Cen, Y. L.; Wu, M. Improvement of visible-light photocatalytic efficiency in a novel InSe/Zr2CO2 heterostructure for overall water splitting. J. Phys. Chem. C 2019, 123, 12781–12790.

[54]

Bao, Y. P.; Wang, J.; Wang, Q.; Cui, X. F.; Long, R.; Li, Z. Q. Immobilization of catalytic sites on quantum dots by ligand bridging for photocatalytic CO2 reduction. Nanoscale 2020, 12, 2507–2514.

[55]

Bian, Z. F.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat. Commun. 2014, 5, 3038.

[56]

Huang, M. Y.; Li, X. B.; Gao, Y. J.; Li, J.; Wu, H. L.; Zhang, L. P.; Tung, C. H.; Wu, L. Z. Surface stoichiometry manipulation enhances solar hydrogen evolution of CdSe quantum dots. J. Mater. Chem. A 2018, 6, 6015–6021.

[57]

Qiu, F.; Han, Z. J.; Peterson, J. J.; Odoi, M. Y.; Sowers, K. L.; Krauss, T. D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 2016, 16, 5347–5352.

[58]

Wang, P.; Wang, M. M.; Zhang, J.; Li, C. P.; Xu, X. L.; Jin, Y. D. Shell thickness engineering significantly boosts the photocatalytic H2 evolution efficiency of CdS/CdSe core/shell quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 35712–35720.

File
12274_2022_5055_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 July 2022
Revised: 12 September 2022
Accepted: 14 September 2022
Published: 24 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

P. W. acknowledges the financial support from the China Scholarship Council (CSC) and the startup funding of Jilin Normal University (No. 2021036). X. T. Y. acknowledges the funding of Changbai Mountain industrial project R&D leading team, Jilin Provincial Department of Science and Technology, China. O. C. acknowledges the support from the Electron Microscopy Facility and NanoTools Facility at Brown University.

Return