Journal Home > Volume 16 , Issue 2

Hollow nanostructures with structural advantages have been widely exploited as catalysts in electrochemical reactions. However, there are only limited strategies for constructing hollow Pd-based nanostructures. In this work, Pd4S hollow nanospheres (Pd4S HNSs) are synthesized with a facile wet-chemical method via a self-templating process. Intermediate Pd-L-cysteine solid nanospheres (SNSs) were firstly obtained by the coordination of L-cysteine with Pd2+, and then in situ converted to hollow nanospheres in the following reduction process. The formation mechanism of the Pd4S HNSs was studied, and the size of the Pd4S HNSs can be readily adjusted by tuning the size of the SNSs. The hollow morphology would help the exposure of active sites and the prevention of aggregation during the catalytic reactions. As a result, the Pd4S HNSs exhibit improved catalytic performances in the oxygen reduction reactions, with a half-wave potential of 0.913 V vs. reversible hydrogen electrode (RHE) and impressive stability in the accelerated durability test.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-templating synthesis of Pd4S hollow nanospheres as electrocatalysts for oxygen reduction reaction

Show Author's information Qian Wang1Donghui Zhao1Jialong Yu1Lijie Shi1Yawen Wang1( )Hongyu Chen2( )
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
School of Science, Westlake University, Hangzhou 310023, China

Abstract

Hollow nanostructures with structural advantages have been widely exploited as catalysts in electrochemical reactions. However, there are only limited strategies for constructing hollow Pd-based nanostructures. In this work, Pd4S hollow nanospheres (Pd4S HNSs) are synthesized with a facile wet-chemical method via a self-templating process. Intermediate Pd-L-cysteine solid nanospheres (SNSs) were firstly obtained by the coordination of L-cysteine with Pd2+, and then in situ converted to hollow nanospheres in the following reduction process. The formation mechanism of the Pd4S HNSs was studied, and the size of the Pd4S HNSs can be readily adjusted by tuning the size of the SNSs. The hollow morphology would help the exposure of active sites and the prevention of aggregation during the catalytic reactions. As a result, the Pd4S HNSs exhibit improved catalytic performances in the oxygen reduction reactions, with a half-wave potential of 0.913 V vs. reversible hydrogen electrode (RHE) and impressive stability in the accelerated durability test.

Keywords: oxygen reduction reaction, electrocatalysis, hollow nanospheres, Pd4S, self-templating

References(42)

[1]

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[2]

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

[3]

Ma, Z.; Cano, Z. P.; Yu, A. P.; Chen, Z. W.; Jiang, G. P.; Fu, X. G.; Yang, L.; Wu, T. P.; Bai, Z. Y.; Lu, J. Enhancing oxygen reduction activity of Pt-based electrocatalysts: From theoretical mechanisms to practical methods. Angew. Chem., Int. Ed. 2020, 59, 18334–18348.

[4]

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

[5]

Gao, M. R.; Jiang, J.; Yu, S. H. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 2012, 8, 13–27.

[6]

Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Li, Y. J.; Li, C. J.; Yang, Y.; Xu, N. Y.; Wang, L.; Guo, S. J. Palladium-based nanoelectrocatalysts for renewable energy generation and conversion. Mater. Today Nano 2018, 1, 29–40.

[7]

Li, M. G.; Xia, Z. H.; Luo, M. C.; He, L.; Tao, L.; Yang, W. W.; Yu, Y. S.; Guo, S. J. Structural regulation of Pd-based nanoalloys for advanced electrocatalysis. Small Sci. 2021, 1, 2100061.

[8]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[9]

Yang, T. H.; Peng, H. C.; Zhou, S.; Lee, C. T.; Bao, S. X.; Lee, Y. H.; Wu, J. M.; Xia, Y. N. Toward a quantitative understanding of the reduction pathways of a salt precursor in the synthesis of metal nanocrystals. Nano Lett. 2017, 17, 334–340.

[10]

Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

[11]

Liu, R.; Zhao, H. C.; Zhao, X. Y.; He, Z. L.; Lai, Y. J.; Shan, W. Y.; Bekana, D.; Li, G.; Liu, J. F. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads. Environ. Sci. Technol. 2018, 52, 9992–10002.

[12]

Han, N.; Sun, M. Z.; Zhou, Y.; Xu, J.; Cheng, C.; Zhou, R.; Zhang, L.; Luo, J.; Huang, B. L.; Li, Y. G. Alloyed palladium-silver nanowires enabling ultrastable carbon dioxide reduction to formate. Adv. Mater. 2021, 33, 2005821.

[13]

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

[14]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[15]

Bu, L. Z.; Shao, Q.; Pi, Y. C.; Yao, J. L.; Luo, M. C.; Lang, J. P.; Hwang, S.; Xin, H. L.; Huang, B. L.; Guo, J. et al. Coupled s-p-d exchange in facet-controlled Pd3Pb tripods enhances oxygen reduction catalysis. Chem 2018, 4, 359–371.

[16]

Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762–16765.

[17]

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

[18]

Nai, J. W.; Lou, X. W. Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 2019, 31, e1706825.

[19]

Wang, Y. W.; Yu, L.; Lou, X. W. Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7423–7426.

[20]

Prieto, G.; Tüysüz, H.; Duyckaerts, N.; Knossalla, J.; Wang, G. H.; Schüth, F. Hollow nano- and microstructures as catalysts. Chem. Rev. 2016, 116, 14056–14119.

[21]

Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex hollow nanostructures: Synthesis and energy-related applications. Adv. Mater. 2017, 29, 1604563.

[22]

Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.

[23]

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

[24]

Zhou, W.; Chen, W. M.; Nai, J. W.; Yin, P. G.; Chen, C.; Guo, L. Selective synthesis of peapodlike Ni/Ni3S2 nanochains and nickel sulfide hollow chains and their magnetic properties. Adv. Funct. Mater. 2010, 20, 3678–3683.

[25]

Yu, X. Y.; Yu, L.; Wu, H. B.; Lou, X. W. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 5331–5335.

[26]

Yu, X. Y.; Lou, X. W. Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 2018, 8, 1701592.

[27]

Yu, L.; Xia, B. Y.; Wang, X.; Lou, X. W. General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 2016, 28, 92–97.

[28]

Lu, X. F.; Zhang, S. L.; Sim, W. L.; Gao, S. Y.; Lou, X. W. Phosphorized CoNi2S4 yolk–shell spheres for highly efficient hydrogen production via water and urea electrolysis. Angew. Chem., Int. Ed. 2021, 60, 22885–22891.

[29]

Baca, M.; Cendrowski, K.; Kukulka, W.; Bazarko, G.; Moszyński, D.; Michalkiewicz, B.; Kalenczuk, R. J.; Zielinska, B. A comparison of hydrogen storage in Pt, Pd and Pt/Pd alloys loaded disordered mesoporous hollow carbon spheres. Nanomaterials 2018, 8, 639.

[30]

Chen, S.; Zhao, J. K.; Su, H. Y.; Li, H. L.; Wang, H. L.; Hu, Z. P.; Bao, J.; Zeng, J. Pd-Pt tesseracts for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 496–503.

[31]

Wang, Z. N.; Wang, H.; Zhang, Z. R.; Yang, G.; He, T. O.; Yin, Y. D.; Jin, M. S. Synthesis of Pd nanoframes by excavating solid nanocrystals for enhanced catalytic properties. ACS Nano 2017, 11, 163–170.

[32]

Amaladasse, F.; Gupta, A.; Shervani, S.; Sivakumar, S.; Balani, K.; Subramaniam, A. Enhanced reversible hydrogen storage in palladium hollow spheres. Part. Sci. Technol. 2021, 39, 617–623.

[33]

Huang, Q. S.; Dang, F.; Zhu, H. T.; Zhao, L. L.; He, B.; Wang, Y.; Wang, J.; Mai, X. A hierarchical porous carbon supported Pd@Pd4S heterostructure as an efficient catalytic material positive electrode for Li-O2 batteries. J. Power Sources 2020, 451, 227738.

[34]

Xu, Y.; Ren, K. L.; Ren, T. L.; Wang, M. Z.; Yu, S. S.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Phosphorus-triggered modification of the electronic structure and surface properties of Pd4S nanowires for robust hydrogen evolution electrocatalysis. J. Mater. Chem. A 2020, 8, 19873–19878.

[35]

Du, C.; Li, P.; Yang, F. L.; Cheng, G. Z.; Chen, S. L.; Luo, W. Monodisperse palladium sulfide as efficient electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2018, 10, 753–761.

[36]

Huang, Y. H.; Seo, K. D.; Park, D. S.; Park, H.; Shim, Y. B. Hydrogen evolution and oxygen reduction reactions in acidic media catalyzed by Pd4S decorated N/S doped carbon derived from Pd coordination polymer. Small 2021, 17, e2007511.

[37]

Zhang, M.; Xu, Y.; Zhang, H. G.; Duan, Z. Y.; Ren, T. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Synergistic coupling of P-doped Pd4S nanoparticles with P/S-co-doped reduced graphene oxide for enhanced alkaline oxygen reduction. Chem. Eng. J. 2022, 429, 132194.

[38]

Zaluzhna, O.; Brightful, L.; Allison, T. C.; Tong, Y. J. Spectroscopic evidence of a bidentate-binding of meso-2,3-dimercaptosuccinic acid on silver nanoclusters. Chem. Phys. Lett. 2011, 509, 148–151.

[39]

Li, L.; Liao, L. F.; Ding, Y. P.; Zeng, H. Y. Dithizone-etched CdTe nanoparticles-based fluorescence sensor for the off–on detection of cadmium ion in aqueous media. RSC Adv. 2017, 7, 10361–10368.

[40]

Wang, M.; Zhang, W. M.; Wang, J. Z.; Wexler, D.; Poynton, S. D.; Slade, R. C. T.; Liu, H. K.; Winther-Jensen, B.; Kerr, R.; Shi, D. Q. et al. PdNi hollow nanoparticles for improved electrocatalytic oxygen reduction in alkaline environments. ACS Appl. Mater. Interfaces 2013, 5, 12708–12715.

[41]

Zhang, Z. Y.; More, K. L.; Sun, K.; Wu, Z. L.; Li, W. Z. Preparation and characterization of PdFe nanoleaves as electrocatalysts for oxygen reduction reaction. Chem. Mater. 2011, 23, 1570–1577.

[42]

Łukaszewski, M.; Soszko, M.; Czerwiński, A. Electrochemical methods of real surface area determination of noble metal electrodes—An overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469.

File
12274_2022_5052_MOESM1_ESM.pdf (1.9 MB)
12274_2022_5052_MOESM2_ESM.pdf (598.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 June 2022
Revised: 14 September 2022
Accepted: 15 September 2022
Published: 22 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21703104, 21673117, and 91956109) and Nanjing Tech University (No. 39837131).

Return