Journal Home > Volume 16 , Issue 6

Li metal has become a strong candidate for anode due to its high theoretical specific capacity and lowest electrochemical potential. However, the poor reversibility caused by continuous chemical and electrochemical degradation hinders the practical application of Li metal. Solid-solution-based metal alloy phases have been proposed as hosts for regulating the non-dendrite electrodeposition, but the fundamental understanding remains unclear due to the drastically different deposition behaviors of Li on them. Here we found the difference in the diffusion coefficient of Li atoms on solid-solution-based metal alloy phases (Li-Mg and Li-Ag alloys) was a major contributor to the different deposition behaviors. The low Li atom diffusion coefficient of Li-Mg alloy showed a preferential Li accumulation on the upper surface rather than the inward-growth plating of Li atoms into alloy foil in Li-Ag alloy. By the process of secondary recrystallization, we improved the diffusion coefficient of Li atoms in Li-Mg alloy that facilitates the inward transfer rather than surface plating of Li atoms. In this case, the recrystallized Li-Mg alloy underwent a solid-solution phase change in the delithiation–lithiation cycles which yielded a high Coulombic efficiency of 99.3% with a reversible gravimetric capacity of 2,874 mAh·g−1 and superior cycling stability over 5,000 h without dendrite growth.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Regulating Li transport in Li-magnesium alloy for dendrite free Li metal anode

Show Author's information Jinxi Wang1Yadong Ye1Hongmin Zhou2Wei Zhang1Zhaowei Sun1Jiawen Zhu1Hongchang Jin1Huanyu Xie1Haoliang Huang3Yi Cui4Rong Huang4Zezhong Li5Song Jin1( )Hengxing Ji1( )
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Hefei National Laboratory for Physical Sciences at the Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
Vacuum Interconnected Nanotech Workstation (NANO-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Suzhou 215123, China
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

Abstract

Li metal has become a strong candidate for anode due to its high theoretical specific capacity and lowest electrochemical potential. However, the poor reversibility caused by continuous chemical and electrochemical degradation hinders the practical application of Li metal. Solid-solution-based metal alloy phases have been proposed as hosts for regulating the non-dendrite electrodeposition, but the fundamental understanding remains unclear due to the drastically different deposition behaviors of Li on them. Here we found the difference in the diffusion coefficient of Li atoms on solid-solution-based metal alloy phases (Li-Mg and Li-Ag alloys) was a major contributor to the different deposition behaviors. The low Li atom diffusion coefficient of Li-Mg alloy showed a preferential Li accumulation on the upper surface rather than the inward-growth plating of Li atoms into alloy foil in Li-Ag alloy. By the process of secondary recrystallization, we improved the diffusion coefficient of Li atoms in Li-Mg alloy that facilitates the inward transfer rather than surface plating of Li atoms. In this case, the recrystallized Li-Mg alloy underwent a solid-solution phase change in the delithiation–lithiation cycles which yielded a high Coulombic efficiency of 99.3% with a reversible gravimetric capacity of 2,874 mAh·g−1 and superior cycling stability over 5,000 h without dendrite growth.

Keywords: solid solution, diffusion coefficient, lithium metal anode, recrystallization, Li-Mg alloy

References(31)

[1]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[2]

Zhang, S. C.; Li, S. Y.; Lu, Y. Y. Designing safer lithium-based batteries with nonflammable electrolytes: A review. eScience 2021, 1, 163–177.

[3]

Liu, B.; Zhang, J. G.; Xu, W. Advancing lithium metal batteries. Joule 2018, 2, 833–845.

[4]

Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5, 74–96.

[5]

Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

[6]

Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

[7]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[8]

Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X. Q.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119.

[9]

Jin, S.; Ye, Y. D.; Niu, Y. J.; Xu, Y. S.; Jin, H. C.; Wang, J. X.; Sun, Z. W.; Cao, A. M.; Wu, X. J.; Luo, Y. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 2020, 142, 8818–8826.

[10]

Zhang, W. J. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 877–885.

[11]

Kim, M. S.; Deepika; Lee, S. H.; Kim, M. S.; Ryu, J. H.; Lee, K. R.; Archer, L. A.; Cho, W. I. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes. Sci. Adv. 2019, 5, eaax5587.

[12]

Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F. et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem., Int. Ed. 2019, 131, 1106–1111.

[13]

Zhao, F.; Zhou, X. F.; Deng, W.; Liu, Z. P. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes. Nano Energy 2019, 62, 55–63.

[14]

Xu, T. H.; Gao, P.; Li, P. R.; Xia, K.; Han, N.; Deng, J.; Li, Y. G.; Lu, J. Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying. Adv. Energy Mater. 2020, 10, 1902343.

[15]

Wan, M. T.; Kang, S. J.; Wang, L.; Lee, H. W.; Zheng, G. W.; Cui, Y.; Sun, Y. M. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 2020, 11, 829.

[16]

Zhang, S. M.; Yang, G. J.; Liu, Z. P.; Weng, S. T.; Li, X. Y.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett. 2021, 6, 4118–4126.

[17]

Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 1964, 41, 3199–3204.

[18]

Nayeb-Hashemi, A. A.; Clark, J. B.; Pelton, A. D. The Li-Mg (lithium-magnesium) system. Bull. Alloy Phase Diagrams 1984, 5, 365–374.

[19]

Xu, X. Y.; Liu, Y. Y.; Hwang, J. Y.; Kapitanova, O. O.; Song, Z. X.; Sun, Y. K.; Matic, A.; Xiong, S. Z. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode. Adv. Energy Mater. 2020, 10, 2002390.

[20]

Deiss, E. Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT. Electrochim. Acta 2005, 50, 2927–2932.

[21]

Weppner, W.; Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 1977, 124, 1569–1578.

[22]

Zhu, Y. J.; Wang, C. S. Galvanostatic intermittent titration technique for phase-transformation electrodes. J. Phys. Chem. C 2010, 114, 2830–2841.

[23]

Chen, C.; Liang, Q. W.; Wang, G.; Liu, D. D.; Xiong, X. H. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 2022, 32, 2107249.

[24]

Wang, C.; Wang, S.; He, Y. B.; Tang, L. K.; Han, C. P.; Yang, C.; Wagemaker, M.; Li, B. H.; Yang, Q. H.; Kim, J. K. et al. Combining fast Li-ion battery cycling with large volumetric energy density: Grain boundary induced high electronic and ionic conductivity in Li4Ti5O12 spheres of densely packed nanocrystallites. Chem. Mater. 2015, 27, 5647–5656.

[25]

Rahman, M. M.; Wang, J. Z.; Hassan, M. F.; Wexler, D.; Liu, H. K. Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries. Adv. Energy Mater. 2011, 1, 212–220.

[26]

Han, S.; Park, J.; Lu, W.; Sastry, A. M. Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials. J. Power Sources 2013, 240, 155–167.

[27]

Shi, F. F.; Pei, A.; Vailionis, A.; Xie, J.; Liu, B. F.; Zhao, J.; Gong, Y. J.; Cui, Y. Strong texturing of lithium metal in batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 12138–12143.

[28]

Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510.

[29]

Choi, S. H.; Lee, S. J.; Yoo, D. J.; Park, J. H.; Park, J. H.; Ko, Y. N.; Park, J.; Sung, Y. E.; Chung, S. Y.; Kim, H. et al. Marginal magnesium doping for high-performance lithium metal batteries. Adv. Energy Mater. 2019, 9, 1902278.

[30]

Levinson, D. W. On the lattice parameter of Mg-Li β alloys. Acta Metall. 1955, 3, 294–295.

[31]

Jagannathan, M.; Chandran, K. S. R. Electrochemical charge/discharge behavior and phase transitions during cell cycling of Li (Mg) alloy anodes for high capacity Li ion batteries. J. Electrochem. Soc. 2013, 160, A1922–A1926.

File
5044_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 June 2022
Revised: 31 August 2022
Accepted: 13 September 2022
Published: 24 October 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We appreciate funding support from the National Natural Science Foundation of China (Nos. 22125902, U2032202, and 21975243), the National Program for Support of Topnotch Young Professionals, the Fundamental Research Funds for the Central Universities (No. WK2030020032), the DNL cooperation Fund, CAS (No. DNL202020), and the Anhui Science Fund for Distinguished Young Scholars (No. 2208085J15).

Return