Journal Home > Volume 16 , Issue 2

Plastic pollution has become a non-negligible global pollution problem. Nanoplastics (NP) can reach the bone marrow with blood circulation and develop hematotoxicity, but potential mechanisms and prevention strategies are lacking. Here, we report the biological distribution of NP particles in the bone marrow of mice and hematopoietic toxicity after exposure to 60 µg of 80 nm NP for 42 days. NP exposure inhibited the capability of bone marrow hematopoietic stem cells to renew and differentiate. Notably, probiotics and melatonin supplementation significantly ameliorated NP-induced hematopoietic damage, and the former was superior to the latter. And interestingly, melatonin and probiotic interventions may involve different microbes and metabolites. After melatonin intervention, creatine showed a stronger correlation with NP-induced gut microbiota disorders. In contrast, probiotic intervention reversed the levels of more gut microbes and plasma metabolites. Of these, threonine, malonylcarnitine, and 3-hydroxybutyric acid might be potential performers in the regulation of hematopoietic toxicity by gut microbes, as they had a more significant relationship with the identified microbes. In conclusion, supplementation with melatonin or probiotics may be two candidates to prevent hematopoietic toxicity attributable to NP exposure. Also, the multi-omics results may lay the foundation for future investigations into in-depth mechanisms.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Melatonin and probiotics ameliorate nanoplastics-induced hematopoietic injury by modulating the gut microbiota-metabolism

Show Author's information Lei Zhang1,§Jiaru Jing1,§Lin Han1Ziyan Liu1Jingyu Wang1Wei Zhang1Ai Gao1,2( )
Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China

§ Lei Zhang and Jiaru Jing contributed equally to this work.

Abstract

Plastic pollution has become a non-negligible global pollution problem. Nanoplastics (NP) can reach the bone marrow with blood circulation and develop hematotoxicity, but potential mechanisms and prevention strategies are lacking. Here, we report the biological distribution of NP particles in the bone marrow of mice and hematopoietic toxicity after exposure to 60 µg of 80 nm NP for 42 days. NP exposure inhibited the capability of bone marrow hematopoietic stem cells to renew and differentiate. Notably, probiotics and melatonin supplementation significantly ameliorated NP-induced hematopoietic damage, and the former was superior to the latter. And interestingly, melatonin and probiotic interventions may involve different microbes and metabolites. After melatonin intervention, creatine showed a stronger correlation with NP-induced gut microbiota disorders. In contrast, probiotic intervention reversed the levels of more gut microbes and plasma metabolites. Of these, threonine, malonylcarnitine, and 3-hydroxybutyric acid might be potential performers in the regulation of hematopoietic toxicity by gut microbes, as they had a more significant relationship with the identified microbes. In conclusion, supplementation with melatonin or probiotics may be two candidates to prevent hematopoietic toxicity attributable to NP exposure. Also, the multi-omics results may lay the foundation for future investigations into in-depth mechanisms.

Keywords: melatonin, gut microbiota-metabolism, probiotics, nanoplastics exposure, hematopoietic injury

References(57)

[1]
Kershaw, P. K. S.; Leemseth, J. Woodring plastic debris in the ocean UNEP Yearbook emerging issues in our global environment; United Nations Environment Programme: Nairobi, 2011.
[2]

Wang, C. H.; Zhao, J.; Xing, B. S. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 2021, 407, 124357.

[3]

Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.

[4]

Hirt, N.; Body-Malapel, M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Part. Fibre Toxicol. 2020, 17, 57.

[5]

Prata, J. C.; da Costa, J. P.; Lopes, I.; Duarte, A. C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455.

[6]

Abbasi, S.; Turner, A. Human exposure to microplastics: A study in Iran. J. Hazard. Mater. 2021, 403, 123799.

[7]

Jiang, B. R.; Kauffman, A. E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J. R.; Chatterjee, S.; Scott, G. I.; Xiao, S. Health impacts of environmental contamination of micro- and nanoplastics: A review. Environ. Health Prev. Med. 2020, 25, 29.

[8]

Hussain, N.; Jaitley, V.; Florence, A. T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 2001, 50, 107–142.

[9]

Gopinath, P. M.; Saranya, V.; Vijayakumar, S.; Mythili Meera, M.; Ruprekha, S.; Kunal, R.; Pranay, A.; Thomas, J.; Mukherjee, A.; Chandrasekaran, N. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci. Rep. 2019, 9, 8860.

[10]

Deng, Y. F.; Zhang, Y.; Lemos, B.; Ren, H. Q. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, 46687.

[11]

Liang, B. X.; Zhong, Y. Z.; Huang, Y. J.; Lin, X.; Liu, J.; Lin, L.; Hu, M. J.; Jiang, J. Y.; Dai, M. Z.; Wang, B. et al. Underestimated health risks: Polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Part. Fibre Toxicol. 2021, 18, 20.

[12]

Yang, D. Q.; Zhu, J. D.; Zhou, X. S.; Pan, D.; Nan, S.; Yin, R. L.; Lei, Q. H.; Ma, N.; Zhu, H. M.; Chen, J. G. et al. Polystyrene micro- and nano-particle coexposure injures fetal thalamus by inducing ROS-mediated cell apoptosis. Environ. Int. 2022, 166, 107362.

[13]

Zhang, Y. F.; Gao, S.; Xia, J.; Liu, F. Hematopoietic hierarchy—An updated roadmap. Trends Cell Biol. 2018, 28, 976–986.

[14]

Lim, D.; Jeong, J.; Song, K. S.; Sung, J. H.; Oh, S. M.; Choi, J. Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412. Chemosphere 2021, 262, 128330.

[15]

Sun, R. L.; Xu, K.; Yu, L. L.; Pu, Y. Q.; Xiong, F.; He, Y. H.; Huang, Q. C.; Tang, M. J.; Chen, M. J.; Yin, L. H. et al. Preliminary study on impacts of polystyrene microplastics on the hematological system and gene expression in bone marrow cells of mice. Ecotoxicol. Environ. Saf. 2021, 218, 112296.

[16]

Adak, A.; Khan, M. R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493.

[17]

Jin, Y. X.; Lu, L.; Tu, W. Q.; Luo, T.; Fu, Z. W. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total Environ. 2019, 649, 308–317.

[18]

Xie, S. L.; Zhou, A. G.; Wei, T. L.; Li, S. Y.; Yang, B.; Xu, G. H.; Zou, J. X. Nanoplastics induce more serious microbiota dysbiosis and inflammation in the gut of adult zebrafish than microplastics. Bull. Environ. Contam. Toxicol. 2021, 107, 640–650.

[19]

Yan, H.; Baldridge, M. T.; King, K. Y. Hematopoiesis and the bacterial microbiome. Blood 2018, 132, 559–564.

[20]

Richter, F. C.; Obba, S.; Simon, A. K. Local exchange of metabolites shapes immunity. Immunology 2018, 155, 309–319.

[21]

Jani, P.; Halbert, G. W.; Langridge, J.; Florence, A. T. Nanoparticle uptake by the rat gastrointestinal mucosa: Quantitation and particle size dependency. J. Pharm. Pharmacol. 1990, 42, 821–826.

[22]

Xu, P. F.; Wang, J. L.; Hong, F.; Wang, S.; Jin, X.; Xue, T. T.; Jia, L.; Zhai, Y. G. Melatonin prevents obesity through modulation of gut microbiota in mice. J. Pineal. Res. 2017, 62, e12399.

[23]

Fan, G. H.; Zhu, T. Y.; Min, X. P.; Xiong, J. Melatonin protects against PM2.5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent manner. Ecotoxicol. Environ. Saf. 2021, 223, 112588.

[24]

Li, D. C.; Zhang, R.; Cui, L. H.; Chu, C.; Zhang, H. Y.; Sun, H.; Luo, J.; Zhou, L. X.; Chen, L. P.; Cui, J. et al. Multiple organ injury in male C57BL/6J mice exposed to ambient particulate matter in a real-ambient PM exposure system in Shijiazhuang, China. Environ. Pollut. 2019, 248, 874–887.

[25]

Hardeland, R. Melatonin and inflammation-story of a double-edged blade. J. Pineal. Res. 2018, 65, e12525.

[26]

Jing, J. R.; Zhang, L.; Han, L.; Wang, J. Y.; Zhang, W.; Liu, Z. Y.; Gao, A. Polystyrene micro-/nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines. Environ. Int. 2022, 161, 107131.

[27]

Zhang, L.; Jing, J. R.; Han, L.; Wang, J. Y.; Zhang, W.; Liu, Z. Y.; Gao, A. Characterization of gut microbiota, metabolism and cytokines in benzene-induced hematopoietic damage. Ecotoxicol. Environ. Saf. 2021, 228, 112956.

[28]

Guo, X. L.; Zhang, L.; Wang, J. Y.; Zhang, W.; Ren, J.; Chen, Y. J.; Zhang, Y. L.; Gao, A. Plasma metabolomics study reveals the critical metabolic signatures for benzene-induced hematotoxicity. JCI Insight 2022, 7, e154999.

[29]

Blacher, E.; Bashiardes, S.; Shapiro, H.; Rothschild, D.; Mor, U.; Dori-Bachash, M.; Kleimeyer, C.; Moresi, C.; Harnik, Y.; Zur, M. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 2019, 572, 474–480.

[30]

Vethaak, A. D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674.

[31]

Zheng, H. B.; Wang, J.; Wei, X. Y.; Chang, L.; Liu, S. Proinflammatory properties and lipid disturbance of polystyrene microplastics in the livers of mice with acute colitis. Sci. Total Environ. 2021, 750, 143085.

[32]

Rafiee, M.; Dargahi, L.; Eslami, A.; Beirami, E.; Jahangiri-Rad, M.; Sabour, S.; Amereh, F. Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere 2018, 193, 745–753.

[33]

Jin, H. B.; Ma, T.; Sha, X. X.; Liu, Z. Y.; Zhou, Y.; Meng, X. N.; Chen, Y. B.; Han, X. D.; Ding, J. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater. 2021, 401, 123430.

[34]

Leslie, H. A.; van Velzen, M. J. M.; Brandsma, S. H.; Vethaak, A. D.; Garcia-Vallejo, J. J.; Lamoree, M. H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199.

[35]

Lv, Y. D.; Huang, Y. J.; Kong, M. Q.; Yang, Q.; Li, G. X. Multivariate correlation analysis of outdoor weathering behavior of polypropylene under diverse climate scenarios. Polym. Test. 2017, 64, 65–76.

[36]

Yang, Q.; Zhang, S. Y.; Su, J.; Li, S.; Lv, X. C.; Chen, J.; Lai, Y. C.; Zhan, J. H. Identification of trace polystyrene nanoplastics down to 50 nm by the hyphenated method of filtration and surface-enhanced Raman spectroscopy based on silver nanowire membranes. Environ. Sci. Technol. 2022, 56, 10818–10828.

[37]

Morgana, S.; Casentini, B.; Amalfitano, S. Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19. J. Hazard. Mater. 2021, 419, 126507.

[38]

Zhou, X. X.; He, S.; Gao, Y.; Chi, H. Y.; Wang, D. J.; Li, Z. C.; Yan, B. Quantitative analysis of polystyrene and poly(methyl methacrylate) nanoplastics in tissues of aquatic animals. Environ. Sci. Technol. 2021, 55, 3032–3040.

[39]

Wang, L. X.; Xu, M.; Chen, J. M.; Zhang, X.; Wang, Q. S.; Wang, Y. X.; Cui, J. S.; Zhang, S. P. Distinct adverse outcomes and lipid profiles of erythrocytes upon single and combined exposure to cadmium and microplastics. Chemosphere 2022, 307, 135942.

[40]

Zhao, L. T.; Shi, W. Y.; Hu, F. F.; Song, X. J.; Cheng, Z. J.; Zhou, J. H. Prolonged oral ingestion of microplastics induced inflammation in the liver tissues of C57BL/6J mice through polarization of macrophages and increased infiltration of natural killer cells. Ecotoxicol. Environ. Saf. 2021, 227, 112882.

[41]

Hamed, M.; Soliman, H. A. M.; Osman, A. G. M.; Sayed, A. E. D. H. Assessment the effect of exposure to microplastics in Nile Tilapia (oreochromis niloticus) early juvenile: I. Blood biomarkers. Chemosphere 2019, 228, 345–350.

[42]

Kim, J. H.; Yu, Y. B.; Choi, J. H. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. J. Hazard. Mater. 2021, 413, 125423.

[43]

Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R. Y.; Xu, D. P.; Li, H. B. Dietary sources and bioactivities of melatonin. Nutrients 2017, 9, 367.

[44]

Wu, Y. L.; He, F.; Zhang, C. H.; Zhang, Q.; Su, X. L.; Zhu, X.; Liu, A.; Shi, W. D.; Lin, W. F.; Jin, Z. Q. et al. Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyrate/GPR109A signaling pathway. J. Nanobiotechnol. 2021, 19, 170.

[45]

Lv, W. J.; Liu, C.; Yu, L. Z.; Zhou, J. H.; Li, Y.; Xiong, Y.; Guo, A.; Chao, L. M.; Qu, Q.; Wei, G. W. et al. Melatonin alleviates neuroinflammation and metabolic disorder in DSS-induced depression rats. Oxid. Med. Cell. Longev. 2020, 2020, 1241894.

[46]

Yin, J.; Li, Y. Y.; Han, H.; Chen, S.; Gao, J.; Liu, G.; Wu, X.; Deng, J. P.; Yu, Q. F.; Huang, X. et al. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J. Pineal. Res. 2018, 65, e12524.

[47]

Li, X. B.; Sun, H.; Li, B.; Zhang, X. W.; Cui, J.; Yun, J.; Yang, Y. P.; Zhang, L. E.; Meng, Q. T.; Wu, S. S. et al. Probiotics ameliorate colon epithelial injury induced by ambient ultrafine particles exposure. Adv. Sci. 2019, 6, 1900972.

[48]

Jenq, R. R.; Ubeda, C.; Taur, Y.; Menezes, C. C.; Khanin, R.; Dudakov, J. A.; Liu, C.; West, M. L.; Singer, N. V.; Equinda, M. J. et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 2012, 209, 903–911.

[49]

Vossen, J. M.; Heidt, P. J.; van den Berg, H.; Gerritsen, E. J. A.; Hermans, J.; Dooren, L. J. Prevention of infection and graft-versus-host disease by suppression of intestinal microflora in children treated with allogeneic bone marrow transplantation. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 14–23.

[50]

Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018, 23, 716–724.

[51]

Inoue, K.; Yan, Q.; Arah, O. A.; Paul, K.; Walker, D. I.; Jones, D. P.; Ritz, B. Air pollution and adverse pregnancy and birth outcomes: Mediation analysis using metabolomic profiles. Curr. Environ. Health Rep. 2020, 7, 231–242.

[52]

Marshall, R. P.; Droste, J. N.; Giessing, J.; Kreider, R. B. Role of creatine supplementation in conditions involving mitochondrial dysfunction: A narrative review. Nutrients 2022, 14, 529.

[53]

Peng, M. X.; Ren, J.; Jing, Y. P.; Jiang, X. K.; Xiao, Q. L.; Huang, J. P.; Tao, Y. H.; Lei, L.; Wang, X.; Yang, Z. L. et al. Tumour-derived small extracellular vesicles suppress CD8+ T cell immune function by inhibiting SLC6A8-mediated creatine import in NPM1-mutated acute myeloid leukaemia. J. Extracell. Vesicles 2021, 10, e12168.

[54]

Mossmann, D.; Park, S.; Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 2018, 18, 744–757.

[55]

Liu, L.; Inoki, A.; Fan, K.; Mao, F. B.; Shi, G. J.; Jin, X.; Zhao, M. L.; Ney, G.; Jones, M.; Sun, S. Y. et al. ER-associated degradation preserves hematopoietic stem cell quiescence and self-renewal by restricting mTOR activity. Blood 2020, 136, 2975–2986.

[56]

van Weeghel, M.; Abdurrachim, D.; Nederlof, R.; Argmann, C. A.; Houtkooper, R. H.; Hagen, J.; Nabben, M.; Denis, S.; Ciapaite, J.; Kolwicz, S. C. et al. Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovasc. Res. 2018, 114, 1324–1334.

[57]

Wang, L.; Chen, P. J.; Xiao, W. H. β-Hydroxybutyrate as an anti-aging metabolite. Nutrients 2021, 13, 3420.

File
12274_2022_5032_MOESM1_ESM.pdf (416.5 KB)
12274_2022_5032_MOESM2_ESM.xlsx (77 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 July 2022
Revised: 04 September 2022
Accepted: 09 September 2022
Published: 15 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Nos. 82073520 and 81773397), the Beijing Natural Science Program and Sci-entific Research Key Program of Beijing Municipal Commission of Ed-ucation (No. KZ201810025032), and the Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan (No. CIT&TCD 20170323).

Return