Journal Home > Volume 16 , Issue 2

Memristors are promising candidates for synapse emulation in brain-inspired neuromorphic computing systems. The main obstacle to their usage in such systems is high variability of memristive characteristics and its severe negative effect on the neural network training. This paper addresses the issue from two points of view on the example of the parylene-based memristors: (i) the methods of the memristor internal stochasticity decrease and (ii) the methods of the memristive neural network architecture simplification. The introduction of an optimal Ag nanoparticle concentration (3 vol.%–6 vol.%) to the memristive structure leads to a statistically significant decrease in the switching voltage variation and endurance increase. Moreover, it is shown that post-fabrication annealing improves memristive characteristics, e.g., resistive switching window increases by an order of magnitude and exceeds 106, the switching voltage variation decreases by a factor of 2 (down to 7% for the set and 17% for the reset voltage), and thermostability is improved. Additional transmission electron microscopy and impedance spectroscopy analysis allowed establishing a multifilamentary resistive switching mechanism for nanocomposite parylene-based memristors. The simulation of the formal neural network based on these memristors demonstrates high classification accuracy with low variation for an important biomedical task, heart disease prediction, after careful feature selection and network architecture simplification. Future prospects of the controlled incorporation of the nanocomposite parylene-based memristors in neural networks are brightened by their scaling possibility in crossbar geometry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Scalable nanocomposite parylene-based memristors: Multifilamentary resistive switching and neuromorphic applications

Show Author's information Anna N. Matsukatova1,2( )Artem Yu. Vdovichenko1,4Timofey D. Patsaev1Pavel A. Forsh2Pavel K. Kashkarov1,2,3,5Vyacheslav A. Demin1Andrey V. Emelyanov1,3( )
National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
Moscow Institute of Physics and Technology, Dolgoprudnyj, Moscow oblast 141701, Russia
Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117993, Russia
Physics Department, Saint Petersburg State University, St. Petersburg 199034, Russia

Abstract

Memristors are promising candidates for synapse emulation in brain-inspired neuromorphic computing systems. The main obstacle to their usage in such systems is high variability of memristive characteristics and its severe negative effect on the neural network training. This paper addresses the issue from two points of view on the example of the parylene-based memristors: (i) the methods of the memristor internal stochasticity decrease and (ii) the methods of the memristive neural network architecture simplification. The introduction of an optimal Ag nanoparticle concentration (3 vol.%–6 vol.%) to the memristive structure leads to a statistically significant decrease in the switching voltage variation and endurance increase. Moreover, it is shown that post-fabrication annealing improves memristive characteristics, e.g., resistive switching window increases by an order of magnitude and exceeds 106, the switching voltage variation decreases by a factor of 2 (down to 7% for the set and 17% for the reset voltage), and thermostability is improved. Additional transmission electron microscopy and impedance spectroscopy analysis allowed establishing a multifilamentary resistive switching mechanism for nanocomposite parylene-based memristors. The simulation of the formal neural network based on these memristors demonstrates high classification accuracy with low variation for an important biomedical task, heart disease prediction, after careful feature selection and network architecture simplification. Future prospects of the controlled incorporation of the nanocomposite parylene-based memristors in neural networks are brightened by their scaling possibility in crossbar geometry.

Keywords: memristor, nanocomposite, neuromorphic computing, resistive switching, parylene

References(52)

[1]

Shalf, J. The future of computing beyond Moore’s law. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190061.

[2]

Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343.

[3]

Sung, S. H.; Kim, T. J.; Shin, H.; Namkung, H.; Im, T. H.; Wang, H. S.; Lee, K. J. Memory-centric neuromorphic computing for unstructured data processing. Nano Res. 2021, 14, 3126–3142.

[4]

Kim, S.; Jung, S.; Kim, M. H.; Chen, Y. C.; Chang, Y. F.; Ryoo, K. C.; Cho, S.; Lee, J. H.; Park, B. G. Scaling effect on silicon nitride memristor with highly doped Si substrate. Small 2018, 14, 1704062.

[5]

Pi, S.; Li, C.; Jiang, H.; Xia, W. W.; Xin, H. L.; Yang, J. J.; Xia, Q. F. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 2019, 14, 35–39.

[6]
Wang, I. T.; Lin, Y. C.; Wang, Y. F.; Hsu, C. W.; Hou, T. H. 3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation. In 2014 IEEE International Electron Devices Meeting, San Francisco, USA, 2015, pp 28.5.1–28.5.4.
[7]

Torrezan, A. C.; Strachan, J. P.; Medeiros-Ribeiro, G.; Williams, R. S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 2011, 22, 485203.

[8]

Jiang, H.; Han, L. L.; Lin, P.; Wang, Z. R.; Jang, M. H.; Wu, Q.; Barnell, M.; Yang, J. J.; Xin, H. L.; Xia, Q. F. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 2016, 6, 28525.

[9]

Nikiruy, K. E.; Emelyanov, A. V.; Demin, V. A.; Sitnikov, A. V.; Minnekhanov, A. A.; Rylkov, V. V.; Kashkarov, P. K.; Kovalchuk, M. V. Dopamine-like STDP modulation in nanocomposite memristors. AIP Adv. 2019, 9, 065116.

[10]

Mikhaylov, A.; Pimashkin, A.; Pigareva, Y.; Gerasimova, S.; Gryaznov, E.; Shchanikov, S.; Zuev, A.; Talanov, M.; Lavrov, I.; Demin, V. et al. Neurohybrid memristive CMOS-integrated systems for biosensors and neuroprosthetics. Front. Neurosci. 2020, 14, 358.

[11]

Xia, L. X.; Gu, P.; Li, B. X.; Tang, T. Q.; Yin, X. L.; Huangfu, W. Q.; Yu, S. M.; Cao, Y.; Wang, Y.; Yang, H. Z. Technological exploration of RRAM crossbar array for matrix-vector multiplication. J. Comput. Sci. Technol. 2016, 31, 3–19.

[12]

Yuan, L.; Liu, S. Z.; Chen, W. L.; Fan, F.; Liu, G. Organic memory and memristors: From mechanisms, materials to devices. Adv. Electron. Mater. 2021, 7, 2100432.

[13]

Lee, S. H.; Zhu, X. J.; Lu, W. D. Nanoscale resistive switching devices for memory and computing applications. Nano Res. 2020, 13, 1228–1243.

[14]

Lee, S. H.; Park, H. L.; Keum, C. M.; Lee, I. H.; Kim, M. H.; Lee, S. D. Organic flexible memristor with reduced operating voltage and high stability by interfacial control of conductive filament growth. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900044.

[15]

Valov, I.; Waser, R.; Jameson, J. R.; Kozicki, M. N. Erratum: Electrochemical metallization memories—Fundamentals, applications, prospects. Nanotechnology 2011, 22, 254003.

[16]

Ielmini, D. Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling. Semicond. Sci. Technol. 2016, 31, 063002.

[17]

Minnekhanov, A. A.; Emelyanov, A. V.; Lapkin, D. A.; Nikiruy, K. E.; Shvetsov, B. S.; Nesmelov, A. A.; Rylkov, V. V.; Demin, V. A.; Erokhin, V. V. Parylene based memristive devices with multilevel resistive switching for neuromorphic applications. Sci. Rep. 2019, 9, 10800.

[18]

Huang, R.; Tang, Y.; Kuang, Y. B.; Ding, W.; Zhang, L. J.; Wang, Y. Y. Resistive switching in organic memory device based on parylene-C with highly compatible process for high-density and low-cost memory applications. IEEE Trans. Electron Devices 2012, 59, 3578–3582.

[19]

Cai, Y. M.; Tan, J.; Liu, Y. F.; Lin, M.; Huang, R. A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology 2016, 27, 275206.

[20]

Chen, Q. Y.; Lin, M.; Wang, Z. W.; Zhao, X. L.; Cai, Y. M.; Liu, Q.; Fang, Y. C.; Yang, Y.; He, M.; Huang, R. Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications. Adv. Electron. Mater. 2019, 5, 1800852.

[21]

Shvetsov, B. S.; Matsukatova, A. N.; Minnekhanov, A. A.; Nesmelov, A. A.; Goncharov, B. V.; Lapkin, D. A.; Martyshov, M. N.; Forsh, P. A.; Rylkov, V. V.; Demin, V. A. et al. Poly-para-xylylene-based memristors on flexible substrates. Tech. Phys. Lett. 2019, 45, 1103–1106.

[22]

Minnekhanov, A. A.; Shvetsov, B. S.; Emelyanov, A. V.; Chernoglazov, K. Y.; Kukueva, E. V.; Nesmelov, A. A.; Grishchenko, Y. V.; Zanaveskin, M. L.; Rylkov, V. V.; Demin, V. A. Parylene-based memristive synapses for hardware neural networks capable of dopamine-modulated STDP learning. J. Phys. D Appl. Phys. 2021, 54, 484002.

[23]

Matsukatova, A. N.; Emelyanov, A. V.; Minnekhanov, A. A.; Demin, V. A.; Rylkov, V. V.; Forsh, P. A.; Kashkarov, P. K. Second-order nanoscale thermal effects in memristive structures based on poly-p-xylylene. JETP Lett. 2020, 112, 357–363.

[24]

Matsukatova, A. N.; Emelyanov, A. V.; Minnekhanov, A. A.; Nesmelov, A. A.; Vdovichenko, A. Y.; Chvalun, S. N.; Rylkov, V. V.; Forsh, P. A.; Demin, V. A.; Kashkarov, P. K. et al. Resistive switching kinetics and second-order effects in parylene-based memristors. Appl. Phys. Lett. 2020, 117, 243501.

[25]

Matsukatova, A. N.; Emelyanov, A. V.; Kulagin, V. A.; Vdovichenko, A. Y.; Minnekhanov, A. A.; Demin, V. A. Nanocomposite parylene-C memristors with embedded Ag nanoparticles for biomedical data processing. Org. Electron. 2022, 102, 106455.

[26]

Kudryashov, M. A.; Mashin, A. I.; Logunov, A. A.; Chidichimo, G.; De Filpo, G. Frequency dependence of the electrical conductivity in Ag/PAN nanocomposites. Tech. Phys. 2012, 57, 965–970.

[27]

Valov, I.; Tsuruoka, T. Effects of moisture and redox reactions in VCM and ECM resistive switching memories. J. Phys. D Appl. Phys. 2018, 51, 413001.

[28]

van de Burgt, Y.; Melianas, A.; Keene, S. T.; Malliaras, G.; Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 2018, 1, 386–397.

[29]

Mu, B. Y.; Hsu, H. H.; Kuo, C. C.; Han, S. T.; Zhou, Y. Organic small molecule-based RRAM for data storage and neuromorphic computing. J. Mater. Chem. C 2020, 8, 12714–12738.

[30]

Lanza, M.; Waser, R.; Ielmini, D.; Yang, J. J.; Goux, L.; Suñe, J.; Kenyon, A. J.; Mehonic, A.; Spiga, S.; Rana, V. et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano 2021, 15, 17214–17231.

[31]

Markram, H.; Lübke, J.; Frotscher, M.; Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 1997, 275, 213–215.

[32]

Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D. Self-adaptive spike-time-dependent plasticity of metal-oxide memristors. Sci. Rep. 2016, 6, 21331.

[33]
Larentis, S.; Nardi, F.; Balatti, S.; Ielmini, D.; Gilmer, D. C. Bipolar-switching model of RRAM by field- and temperature-activated ion migration. In Proceedings of the 4th IEEE International Memory Workshop, Milano, Italy, 2012, pp 1–4.
[34]

Kim, S.; Kim, S. J.; Kim, K. M.; Lee, S. R.; Chang, M.; Cho, E.; Kim, Y. B.; Kim, C. J.; Chung, U. I.; Yoo, I. K. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 2013, 3, 1680.

[35]

Marchewka, A.; Roesgen, B.; Skaja, K.; Du, H. C.; Jia, C. L.; Mayer, J.; Rana, V.; Waser, R.; Menzel, S. Nanoionic resistive switching memories: On the physical nature of the dynamic reset process. Adv. Electron. Mater. 2016, 2, 1500233.

[36]

Minnekhanov, A. A.; Shvetsov, B. S.; Martyshov, M. M.; Nikiruy, K. E.; Kukueva, E. V.; Presnyakov, M. Y.; Forsh, P. A.; Rylkov, V. V.; Erokhin, V. V.; Demin, V. A. et al. On the resistive switching mechanism of parylene-based memristive devices. Org. Electron. 2019, 74, 89–95.

[37]

Kotova, M. S.; Drozdov, K. A.; Dubinina, T. V.; Kuzmina, E. A.; Tomilova, L. G.; Vasiliev, R. B.; Dudnik, A. O.; Ryabova, L. I.; Khokhlov, D. R. In situ impedance spectroscopy of filament formation by resistive switches in polymer based structures. Sci. Rep. 2018, 8, 9080.

[38]
Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; John Wiley & Sons: Hoboken, 2005.
[39]

Menzel, S.; Böttger, U.; Waser, R. Simulation of multilevel switching in electrochemical metallization memory cells. J. Appl. Phys. 2012, 111, 014501.

[40]
Pytlak, K. Personal Key Indicators of Heart Disease [Online].https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease (accessed Aug 7, 2022).
[41]

Siemon, A.; Ferch, S.; Heittmann, A.; Waser, R.; Wouters, D. J.; Menzel, S. Analyses of a 1-layer neuromorphic network using memristive devices with non-continuous resistance levels. APL Mater. 2019, 7, 091110.

[42]

Wang, Z. R.; Li, C.; Song, W. H.; Rao, M. Y.; Belkin, D.; Li, Y. N.; Yan, P.; Jiang, H.; Lin, P.; Hu, M. et al. Reinforcement learning with analogue memristor arrays. Nat. Electron. 2019, 2, 115–124.

[43]

Shvetsov, B. S.; Minnekhanov, A. A.; Emelyanov, A. V.; Ilyasov, A. I.; Grishchenko, Y. V.; Zanaveskin, M. L.; Nesmelov, A. A.; Streltsov, D. R.; Patsaev, T. D.; Vasiliev, A. L. et al. Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing. Nanotechnology 2022, 33, 255201.

[44]

Streltsov, D. R.; Buzin, A. I.; Dmitryakov, P. V.; Kamasa, P.; Ivanov, D. A.; Chvalun, S. N. A study of p-xylylene polymerization kinetics using high-vacuum in situ differential scanning calorimetry. Thermochim. Acta 2016, 643, 65–72.

[45]

Streltsov, D. R.; Mailyan, K. A.; Gusev, A. V.; Ryzhikov, I. A.; Kiryukhin, Y. I.; Orekhov, A. S.; Vasiliev, A. L.; Erina, N. A.; Pebalk, A. V.; Odarchenko, Y. I. et al. Structure and optical properties of thin poly(p-xylylene)-silver nanocomposite films prepared by low-temperature vapor deposition polymerization. Polymer 2015, 71, 60–69.

[46]

Song, H. W.; Ilegbusi, O. J.; Trakhtenberg, L. I. Modeling vapor deposition of metal/semiconductor-polymer nanocomposite. Thin Solid Films 2005, 476, 190–195.

[47]

Streltsov, D. R.; Mailyan, K. A.; Gusev, A. V.; Ryzhikov, I. A.; Erina, N. A.; Su, C. M.; Pebalk, A. V.; Ozerin, S. A.; Chvalun, S. N. Electrical properties, structure, and surface morphology of poly(p-xylylene)-silver nanocomposites synthesized by low-temperature vapor deposition polymerization. Appl. Phys. A 2013, 110, 413–422.

[48]

Potdar, K.; Pardawala, T. S.; Pai, C. D. A comparative study of categorical variable encoding techniques for neural network classifiers. Int. J. Comput. Appl. 2017, 175, 7–9.

[49]

Kursa, M. B.; Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13.

[50]
Flach, P.; Hernández-Orallo, J.; Ferri, C. A coherent interpretation of AUC as a measure of aggregated classification performance. In Proceedings of the 28th International Conference on International Conference on Machine Learning, Bellevue, USA, 2011, pp 657–664.
[51]

Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 2013, 4, 627–635.

[52]
Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In KDD’19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019, pp 2623–2631.
File
12274_2022_5027_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 August 2022
Revised: 07 September 2022
Accepted: 08 September 2022
Published: 11 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Russian Science Foundation (project No. 18-79-10253). A. N. M. thanks the Theoretical Physics and Mathematics Advancement Foundation “BASIS” (No. 19-2-6-57-1) for support in the memristive characteristics investigation part and acknowledges financial support from the Non-commercial Foundation for the Advancement of Science and Education INTELLECT in the neural network simulation part.

Authors are thankful to Dr. V. V. Rylkov, Dr. A. A. Minnekhanov, Dr. A. L. Vasiliev (NRC “Kurchatov Institute”), and Dr. M. N. Martyshov (Lomonosov Moscow State University) for fruitful discussions and to Yu. V. Grishchenko (NRC “Kurchatov Institute”) for lithographic patterning of the bottom electrodes of crossbar structures.

Measurements were carried out with the equipment of the Resource Centres (NRC “Kurchatov Institute”).

Return