Journal Home > Volume 16 , Issue 2

Two-dimensional (2D) twisted moiré materials, a new class of van der Waals (vdW) layered heterostructures with different twist angles between neighboring layers, have attracted tremendous attention due to their rich emerging properties. In this review, we systematically summarize the recent progress of 2D twisted moiré materials. Firstly, we introduce several representative fabrication methods and the fascinating topographies of the twisted moiré materials. Specifically, we discuss various remarkable physical properties related to twisted angles, including flat bands, unconventional superconductivity, ferromagnetism, and ferroelectricity. We also analyze the potential applications in various twisted moiré systems. Finally, the challenges and future perspectives of the twisted moiré materials are discussed. This work would spur edge-cutting ideas and related achievements in the scientific and technological frontiers of 2D twisted moiré materials.


menu
Abstract
Full text
Outline
About this article

Advance in two-dimensional twisted moiré materials: Fabrication, properties, and applications

Show Author's information Han Yang1Liwei Liu1( )Huixia Yang1Yu Zhang1Xu Wu1Yuan Huang1( )Hong-Jun Gao2Yeliang Wang1( )
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Two-dimensional (2D) twisted moiré materials, a new class of van der Waals (vdW) layered heterostructures with different twist angles between neighboring layers, have attracted tremendous attention due to their rich emerging properties. In this review, we systematically summarize the recent progress of 2D twisted moiré materials. Firstly, we introduce several representative fabrication methods and the fascinating topographies of the twisted moiré materials. Specifically, we discuss various remarkable physical properties related to twisted angles, including flat bands, unconventional superconductivity, ferromagnetism, and ferroelectricity. We also analyze the potential applications in various twisted moiré systems. Finally, the challenges and future perspectives of the twisted moiré materials are discussed. This work would spur edge-cutting ideas and related achievements in the scientific and technological frontiers of 2D twisted moiré materials.

Keywords: two-dimensional (2D) materials, superconductivity, ferromagnetism, twist, moiré

References(177)

[1]

Suárez Morell, E.; Correa, J. D.; Vargas, P.; Pacheco, M.; Barticevic, Z. Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys. Rev. B 2010, 82, 121407.

[2]

Bistritzer, R.; MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237.

[3]

Lopes dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Continuum model of the twisted graphene bilayer. Phys. Rev. B 2012, 86, 155449.

[4]

Li, G. H.; Luican, A.; Lopes dos Santos, J. M. B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109–113.

[5]

Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

[6]

Kim, K.; DaSilva, A.; Huang, S. Q.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369.

[7]

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

[8]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[9]

Nuckolls, K. P.; Oh, M.; Wong, D.; Lian, B.; Watanabe, K.; Taniguchi, T.; Bernevig, B. A.; Yazdani, A. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 2020, 588, 610–615.

[10]

Choi, Y.; Kemmer, J.; Peng, Y.; Thomson, A.; Arora, H.; Polski, R.; Zhang, Y. R.; Ren, H. C.; Alicea, J.; Refael, G. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 2019, 15, 1174–1180.

[11]

Jiang, Y. H.; Lai, X. Y.; Watanabe, K.; Taniguchi, T.; Haule, K.; Mao, J. H.; Andrei, E. Y. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 2019, 573, 91–95.

[12]

Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 2020, 367, 900–903.

[13]

Yankowitz, M.; Chen, S. W.; Polshyn, H.; Zhang, Y. X.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A. F.; Dean, C. R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064.

[14]

Codecido, E.; Wang, Q. Y.; Koester, R.; Che, S.; Tian, H. D.; Lv, R.; Tran, S.; Watanabe, K.; Taniguchi, T.; Zhang, F. et al. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv. 2019, 5, eaaw9770.

[15]

Oh, M.; Nuckolls, K. P.; Wong, D.; Lee, R. L.; Liu, X. M.; Watanabe, K.; Taniguchi, T.; Yazdani, A. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 2021, 600, 240–245.

[16]

Arora, H. S.; Polski, R.; Zhang, Y. R.; Thomson, A.; Choi, Y.; Kim, H.; Lin, Z.; Wilson, I. Z.; Xu, X. D.; Chu, J. H. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 2020, 583, 379–384.

[17]

Shavit, G.; Berg, E.; Stern, A.; Oreg, Y. Theory of correlated insulators and superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 2021, 127, 247703.

[18]

Wu, F. C.; Das Sarma, S. Collective excitations of quantum anomalous hall ferromagnets in twisted bilayer graphene. Phys. Rev. Lett. 2020, 124, 046403.

[19]

Kwan, Y. H.; Hu, Y. C.; Simon, S. H.; Parameswaran, S. A. Exciton band topology in spontaneous quantum anomalous Hall insulators: Applications to twisted bilayer graphene. Phys. Rev. Lett. 2021, 126, 137601.

[20]

Liu, J. P.; Dai, X. Theories for the correlated insulating states and quantum anomalous Hall effect phenomena in twisted bilayer graphene. Phys. Rev. B 2021, 103, 035427.

[21]

Shi, J. T.; Zhu, J. H.; MacDonald, A. H. Moiré commensurability and the quantum anomalous Hall effect in twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 2021, 103, 075122.

[22]

Xu, S. G.; Al Ezzi, M. M.; Balakrishnan, N.; Garcia-Ruiz, A.; Tsim, B.; Mullan, C.; Barrier, J.; Xin, N.; Piot, B. A.; Taniguchi, T. et al. Tunable van Hove singularities and correlated states in twisted monolayer-bilayer graphene. Nat. Phys. 2021, 17, 619–626.

[23]

Zhang, X.; Tsai, K. T.; Zhu, Z. Y.; Ren, W.; Luo, Y. J.; Carr, S.; Luskin, M.; Kaxiras, E.; Wang, K. Correlated insulating states and transport signature of superconductivity in twisted trilayer graphene superlattices. Phys. Rev. Lett. 2021, 127, 166802.

[24]

Chen, G. R.; Sharpe, A. L.; Fox, E. J.; Wang, S. X.; Lyu, B.; Jiang, L. L.; Li, H. Y.; Watanabe, K.; Taniguchi, T.; Crommie, M. F. et al. Tunable orbital ferromagnetism at noninteger filling of a moiré superlattice. Nano Lett. 2022, 22, 238–245.

[25]

Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Evidence of orbital ferromagnetism in twisted bilayer graphene aligned to hexagonal boron nitride. Nano Lett. 2021, 21, 4299–4304.

[26]

He, M. H.; Zhang, Y. H.; Li, Y. H.; Fei, Z. Y.; Watanabe, K.; Taniguchi, T.; Xu, X. D.; Yankowitz, M. Competing correlated states and abundant orbital magnetism in twisted monolayer-bilayer graphene. Nat. Commun. 2021, 12, 4727.

[27]

Goodwin, Z. A. H.; Klebl, L.; Vitale, V.; Liang, X.; Gogtay, V.; van Gorp, X.; Kennes, D. M.; Mostofi, A. A.; Lischner, J. Flat bands, electron interactions, and magnetic order in magic-angle mono-trilayer graphene. Phys. Rev. Mater. 2021, 5, 084008.

[28]

Lisi, S.; Lu, X. B.; Benschop, T.; de Jong, T. A.; Stepanov, P.; Duran, J. R.; Margot, F.; Cucchi, I.; Cappelli, E.; Hunter, A. et al. Observation of flat bands in twisted bilayer graphene. Nat. Phys. 2021, 17, 189–193.

[29]

Pierce, A. T.; Xie, Y. L.; Park, J. M.; Khalaf, E.; Lee, S. H.; Cao, Y.; Parker, D. E.; Forrester, P. R.; Chen, S. W.; Watanabe, K. et al. Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene. Nat. Phys. 2021, 17, 1210–1215.

[30]

Fischer, A.; Goodwin, Z. A. H.; Mostofi, A. A.; Lischner, J.; Kennes, D. M.; Klebl, L. Unconventional superconductivity in magic-angle twisted trilayer graphene. npj Quantum Mater. 2022, 7, 5.

[31]

Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 2020, 16, 725–733.

[32]

Liu, X. M.; Hao, Z. Y.; Khalaf, E.; Lee, J. Y.; Ronen, Y.; Yoo, H.; Haei Najafabadi, D.; Watanabe, K.; Taniguchi, T.; Vishwanath, A. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 2020, 583, 221–225.

[33]

Shen, C.; Chu, Y. B.; Wu, Q. S.; Li, N.; Wang, S. P.; Zhao, Y. C.; Tang, J.; Liu, J. Y.; Tian, J. P.; Watanabe, K. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 2020, 16, 520–525.

[34]

Vizner Stern, M.; Waschitz, Y.; Cao, W.; Nevo, I.; Watanabe, K.; Taniguchi, T.; Sela, E.; Urbakh, M.; Hod, O.; Ben Shalom, M. Interfacial ferroelectricity by van der Waals sliding. Science 2021, 372, 1462–1466.

[35]

Woods, C. R.; Ares, P.; Nevison-Andrews, H.; Holwill, M. J.; Fabregas, R.; Guinea, F.; Geim, A. K.; Novoselov, K. S.; Walet, N. R.; Fumagalli, L. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 2021, 12, 347.

[36]

Yasuda, K.; Wang, X. R.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 2021, 372, 1458–1462.

[37]

Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.

[38]

Ghiotto, A.; Shih, E. M.; Pereira, G. S. S. G.; Rhodes, D. A.; Kim, B.; Zang, J. W.; Millis, A. J.; Watanabe, K.; Taniguchi, T.; Hone, J. C. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 2021, 597, 345–349.

[39]

Naik, M. H.; Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2018, 121, 266401.

[40]

Wu, F. C.; Lovorn, T.; Tutuc, E.; MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 2018, 121, 026402.

[41]

Lee, P. A.; Nagaosa, N.; Wen, X. G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 2006, 78, 17–85.

[42]

Pfleiderer, C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 2009, 81, 1551–1624.

[43]

Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 2011, 83, 1589–1652.

[44]

Keimer, B.; Kivelson, S. A.; Norman, M. R.; Uchida, S.; Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 2015, 518, 179–186.

[45]

Zheng, Z. R.; Ma, Q.; Bi, Z.; de la Barrera, S.; Liu, M. H.; Mao, N. N.; Zhang, Y.; Kiper, N.; Watanabe, K.; Taniguchi, T. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 2020, 588, 71–76.

[46]

Walet, N. R.; Guinea, F. Flat bands, strains, and charge distribution in twisted bilayer h-BN. Phys. Rev. B 2021, 103, 125427.

[47]

Burg, G. W.; Zhu, J. H.; Taniguchi, T.; Watanabe, K.; MacDonald, A. H.; Tutuc, E. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 2019, 123, 197702.

[48]

Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J. M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature 2020, 583, 215–220.

[49]

Wu, Z. W.; Kuang, X. H.; Zhan, Z.; Yuan, S. J. Magic angle and plasmon mode engineering in twisted trilayer graphene with pressure. Phys. Rev. B 2021, 104, 205104.

[50]

Wang, L.; Shih, E. M.; Ghiotto, A.; Xian, L. D.; Rhodes, D. A.; Tan, C.; Claassen, M.; Kennes, D. M.; Bai, Y. S.; Kim, B. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 2020, 19, 861–866.

[51]

Park, J. M.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 2021, 590, 249–255.

[52]

Chen, G. R.; Sharpe, A. L.; Gallagher, P.; Rosen, I. T.; Fox, E. J.; Jiang, L. L.; Lyu, B.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 2019, 572, 215–219.

[53]

Cao, Y.; Park, J. M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 2021, 595, 526–531.

[54]

Chen, G. R.; Sharpe, A. L.; Fox, E. J.; Zhang, Y. H.; Wang, S. X.; Jiang, L. L.; Lyu, B.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 2020, 579, 56–61.

[55]

Chen, S. W.; He, M. H.; Zhang, Y. H.; Hsieh, V.; Fei, Z. Y.; Watanabe, K.; Taniguchi, T.; Cobden, D. H.; Xu, X. D.; Dean, C. R. et al. Electrically tunable correlated and topological states in twisted monolayer-bilayer graphene. Nat. Phys. 2021, 17, 374–380.

[56]

Polshyn, H.; Zhu, J.; Kumar, M. A.; Zhang, Y.; Yang, F.; Tschirhart, C. L.; Serlin, M.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 2020, 588, 66–70.

[57]

Bennett, D.; Remez, B. On electrically tunable stacking domains and ferroelectricity in moiré superlattices. npj 2D Mater. Appl. 2022, 6, 7.

[58]

Wang, X. R.; Yasuda, K.; Zhang, Y.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Fu, L.; Jarillo-Herrero, P. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 2022, 17, 367–371.

[59]

Weston, A.; Castanon, E. G.; Enaldiev, V.; Ferreira, F.; Bhattacharjee, S.; Xu, S. G.; Corte-León, H.; Wu, Z. F.; Clark, N.; Summerfield, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 2022, 17, 390–395.

[60]

Khan, A. I.; Keshavarzi, A.; Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 2020, 3, 588–597.

[61]

Finney, N. R.; Yankowitz, M.; Muraleetharan, L.; Watanabe, K.; Taniguchi, T.; Dean, C. R.; Hone, J. Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 2019, 14, 1029–1034.

[62]

McGilly, L. J.; Kerelsky, A.; Finney, N. R.; Shapovalov, K.; Shih, E. M.; Ghiotto, A.; Zeng, Y. H.; Moore, S. L.; Wu, W. J.; Bai, Y. S. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 2020, 15, 580–584.

[63]

Weston, A.; Zou, Y. C.; Enaldiev, V.; Summerfield, A.; Clark, N.; Zólyomi, V.; Graham, A.; Yelgel, C.; Magorrian, S.; Zhou, M. W. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2020, 15, 592–597.

[64]

Li, H. Y.; Li, S. W.; Naik, M. H.; Xie, J. X.; Li, X. Y.; Wang, J. Y.; Regan, E.; Wang, D. Q.; Zhao, W. Y.; Zhao, S. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 2021, 20, 945–950.

[65]

Ribeiro-Palau, R.; Zhang, C. J.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. R. Twistable electronics with dynamically rotatable heterostructures. Science 2018, 361, 690–693.

[66]

Padhi, B.; Setty, C.; Phillips, P. W. Doped twisted bilayer graphene near magic angles: Proximity to Wigner crystallization, not Mott insulation. Nano Lett. 2018, 18, 6175–6180.

[67]

Yoo, H.; Engelke, R.; Carr, S.; Fang, S. A.; Zhang, K.; Cazeaux, P.; Sung, S. H.; Hovden, R.; Tsen, A. W.; Taniguchi, T. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 2019, 18, 448–453.

[68]

Alden, J. S.; Tsen, A. W.; Huang, P. Y.; Hovden, R.; Brown, L.; Park, J.; Muller, D. A.; McEuen, P. L. Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. USA 2013, 110, 11256–11260.

[69]
LinJ. H.FangW. J.ZhouW.LupiniA. R.IdroboJ. C.KongJ.PennycookS. J.PantelidesS. T. AC/AB stacking boundaries in bilayer grapheneNano Lett.2013133262326810.1021/nl4013979

Lin, J. H.; Fang, W. J.; Zhou, W.; Lupini, A. R.; Idrobo, J. C.; Kong, J.; Pennycook, S. J.; Pantelides, S. T. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 2013, 13, 3262–3268.

[70]

Butz, B.; Dolle, C.; Niekiel, F.; Weber, K.; Waldmann, D.; Weber, H. B.; Meyer, B.; Spiecker, E. Dislocations in bilayer graphene. Nature 2014, 505, 533–537.

[71]

Yuk, J. M.; Jeong, H. Y.; Kim, N. Y.; Park, H. J.; Kim, G.; Shin, H. S.; Ruoff, R. S.; Lee, J. Y.; Lee, Z. Superstructural defects and superlattice domains in stacked graphene. Carbon 2014, 80, 755–761.

[72]

Rosenberger, M. R.; Chuang, H. J.; Phillips, M.; Oleshko, V. P.; McCreary, K. M.; Sivaram, S. V.; Hellberg, C. S.; Jonker, B. T. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 4550–4558.

[73]

Carr, S.; Massatt, D.; Torrisi, S. B.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Relaxation and domain formation in incommensurate two-dimensional heterostructures. Phys. Rev. B 2018, 98, 224102.

[74]

Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

[75]

Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

[76]

Yu, H. Y.; Liu, G. B.; Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 2018, 5, 035021.

[77]

Yuan, L.; Zheng, B. Y.; Kunstmann, J.; Brumme, T.; Kuc, A. B.; Ma, C.; Deng, S. B.; Blach, D.; Pan, A. L.; Huang, L. B. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 2020, 19, 617–623.

[78]

Zhao, W. M.; Zhu, L.; Nie, Z. W.; Li, Q. Y.; Wang, Q. W.; Dou, L. G.; Hu, J. G.; Xian, L. D.; Meng, S.; Li, S. C. Moiré enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures. Nat. Mater. 2022, 21, 284–289.

[79]

Chen, Y. Y.; Liu, L. W.; Song, X.; Yang, H.; Huang, Z. P.; Zhang, T.; Yang, H. X.; Gao, H. J.; Wang, Y. L. Twisted charge-density-wave patterns in bilayer 2D crystals and modulated electronic states. 2D Mater. 2022, 9, 014007.

[80]

Liu, M. Y.; Wang, L. P.; Yu, G. Developing graphene-based moiré heterostructures for twistronics. Adv. Sci. 2022, 9, 2103170.

[81]

He, F.; Zhou, Y. J.; Ye, Z. F.; Cho, S. H.; Jeong, J.; Meng, X. H.; Wang, Y. G. Moiré patterns in 2D materials: A review. ACS Nano 2021, 15, 5944–5958.

[82]

Cai, L.; Yu, G. Fabrication strategies of twisted bilayer graphenes and their unique properties. Adv. Mater. 2021, 33, 2004974.

[83]

Nimbalkar, A.; Kim, H. Opportunities and challenges in twisted bilayer graphene: A review. Nano-Micro Lett. 2020, 12, 126.

[84]

Lan, C. Y.; Zhou, Z. Y.; Zhou, Z. F.; Li, C.; Shu, L.; Shen, L. F.; Li, D. P.; Dong, R. T.; Yip, S.; Ho, J. C. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 2018, 11, 3371–3384.

[85]

Yin, J. B.; Wang, H.; Peng, H.; Tan, Z. J.; Liao, L.; Lin, L.; Sun, X.; Koh, A. L.; Chen, Y. L.; Peng, H. L. et al. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun. 2016, 7, 10699.

[86]

Deng, B.; Wang, B. B.; Li, N.; Li, R. T.; Wang, Y. N.; Tang, J. L.; Fu, Q.; Tian, Z.; Gao, P.; Xue, J. M. et al. Interlayer decoupling in 30° twisted bilayer graphene quasicrystal. ACS Nano 2020, 14, 1656–1664.

[87]

Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

[88]

Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376–1382.

[89]

Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 2012, 6, 3243–3250.

[90]

Yuan, Q. H.; Yakobson, B. I.; Ding, F. Edge-catalyst wetting and orientation control of graphene growth by chemical vapor deposition growth. J. Phys. Chem. Lett. 2014, 5, 3093–3099.

[91]

Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.

[92]

Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, I. N.; Lavrik, N. V.; List, F.; Gupta, N. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 2018, 17, 318–322.

[93]

Sun, L. Z.; Wang, Z. H.; Wang, Y. C.; Zhao, L.; Li, Y. L. Z.; Chen, B. H.; Huang, S. H.; Zhang, S. S.; Wang, W. D.; Pei, D. et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 2021, 12, 2391.

[94]

Li, Q. Y.; Chou, H.; Zhong, J. H.; Liu, J. Y.; Dolocan, A.; Zhang, J. Y.; Zhou, Y. H.; Ruoff, R. S.; Chen, S. S.; Cai, W. W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013, 13, 486–490.

[95]

Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc. 2014, 136, 3040–3047.

[96]

Yan, Z.; Liu, Y. Y.; Ju, L.; Peng, Z. W.; Lin, J.; Wang, G.; Zhou, H. Q.; Xiang, C. S.; Samuel, E. L. G.; Kittrell, C. et al. Large hexagonal Bi- and trilayer graphene single crystals with varied interlayer rotations. Angew. Chem. 2014, 126, 1591–1595.

[97]

Chen, H.; Zhang, X. L.; Zhang, Y. Y.; Wang, D. F.; Bao, D. L.; Que, Y. D.; Xiao, W. D.; Du, S. X.; Ouyang, M.; Pantelides, S. T. et al. Atomically precise, custom-design origami graphene nanostructures. Science 2019, 365, 1036–1040.

[98]

Chang, J. S.; Kim, S.; Sung, H. J.; Yeon, J.; Chang, K. J.; Li, X. Q.; Kim, S. Graphene nanoribbons with atomically sharp edges produced by AFM induced self-folding. Small 2018, 14, 1803386.

[99]

Schmidt, H.; Rode, J. C.; Smirnov, D.; Haug, R. J. Superlattice structures in twisted bilayers of folded graphene. Nat. Commun. 2014, 5, 5742.

[100]

Liao, M. Z.; Wu, Z. W.; Du, L. J.; Zhang, T. T.; Wei, Z.; Zhu, J. Q.; Yu, H.; Tang, J.; Gu, L.; Xing, Y. X. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 2018, 9, 4068.

[101]

Chen, X. D.; Xin, W.; Jiang, W. S.; Liu, Z. B.; Chen, Y. S.; Tian, J. G. High-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 2016, 28, 2563–2570.

[102]

Liao, M. Z.; Wei, Z.; Du, L. J.; Wang, Q. Q.; Tang, J.; Yu, H.; Wu, F. F.; Zhao, J. J.; Xu, X. Z.; Han, B. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153.

[103]

Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522–11528.

[104]

Phan, H. D.; Kim, Y.; Lee, J.; Liu, R. L.; Choi, Y.; Cho, J. H.; Lee, C. Ultraclean and direct transfer of a wafer-scale MoS2 thin film onto a plastic substrate. Adv. Mater. 2017, 29, 1603928.

[105]

Huang, Y.; Pan, Y. H.; Yang, R.; Bao, L. H.; Meng, L.; Luo, H. L.; Cai, Y. Q.; Liu, G. D.; Zhao, W. J.; Zhou, Z. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.

[106]

Yu, H.; Liao, M. Z.; Zhao, W. J.; Liu, G. D.; Zhou, X. J.; Wei, Z.; Xu, X. Z.; Liu, K. H.; Hu, Z. H.; Deng, K. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001–12007.

[107]

Huang, Y.; Sutter, E.; Shi, N. N.; Zheng, J. B.; Yang, T. Z.; Englund, D.; Gao, H. J.; Sutter, P. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 2015, 9, 10612–10620.

[108]

Kerelsky, A.; McGilly, L. J.; Kennes, D. M.; Xian, L. D.; Yankowitz, M.; Chen, S. W.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 2019, 572, 95–100.

[109]

Xie, Y. L.; Lian, B.; Jäck, B.; Liu, X. M.; Chiu, C. L.; Watanabe, K.; Taniguchi, T.; Bernevig, B. A.; Yazdani, A. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 2019, 572, 101–105.

[110]

Choi, Y.; Kim, H.; Peng, Y.; Thomson, A.; Lewandowski, C.; Polski, R.; Zhang, Y. R.; Arora, H. S.; Watanabe, K.; Taniguchi, T. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 2021, 589, 536–541.

[111]
ZhanZ.ZhangY. P.LvP. F.ZhongH. X.YuG. D.GuineaF.Silva-GuillenJ. Á.YuanS. J. Tunability of multiple ultraflat bands and effect of spin-orbit coupling in twisted bilayer transition metal dichalcogenidesPhys. Rev. B2020102241106(R)10.1103/PhysRevB.102.241106

Zhan, Z.; Zhang, Y. P.; Lv, P. F.; Zhong, H. X.; Yu, G. D.; Guinea, F.; Silva-Guillen, J. Á.; Yuan, S. J. Tunability of multiple ultraflat bands and effect of spin-orbit coupling in twisted bilayer transition metal dichalcogenides. Phys. Rev. B 2020, 102, 241106(R).

[112]

Zhang, Z. M.; Wang, Y. M.; Watanabe, K.; Taniguchi, T.; Ueno, K.; Tutuc, E.; LeRoy, B. J. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 2020, 16, 1093–1096.

[113]

Choi, Y. W.; Choi, H. J. Dichotomy of electron–phonon coupling in graphene Moiré flat bands. Phys. Rev. Lett. 2021, 127, 167001.

[114]

Carr, S.; Fang, S. A.; Zhu, Z. Y.; Kaxiras, E. Exact continuum model for low-energy electronic states of twisted bilayer graphene. Phys. Rev. Res. 2019, 1, 013001.

[115]

Zhang, Y. H.; Mao, D.; Cao, Y.; Jarillo-Herrero, P.; Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 2019, 99, 075127.

[116]

Devakul, T.; Crépel, V.; Zhang, Y.; Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 2021, 12, 6730.

[117]

Hao, Z. Y.; Zimmerman, A. M.; Ledwith, P.; Khalaf, E.; Najafabadi, D. H.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; Kim, P. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 2021, 371, 1133–1138.

[118]

Wolf, T. M. R.; Zilberberg, O.; Blatter, G.; Lado, J. L. Spontaneous valley spirals in magnetically encapsulated twisted bilayer graphene. Phys. Rev. Lett. 2021, 126, 056803.

[119]

Wang, T. L.; Bultinck, N.; Zaletel, M. P. Flat-band topology of magic angle graphene on a transition metal dichalcogenide. Phys. Rev. B 2020, 102, 235146.

[120]

Szentpéteri, B.; Rickhaus, P.; de Vries, F. K.; Márffy, A.; Fülöp, B.; Tóvári, E.; Watanabe, K.; Taniguchi, T.; Kormányos, A.; Csonka, S. et al. Tailoring the band structure of twisted double bilayer graphene with pressure. Nano Lett. 2021, 21, 8777–8784.

[121]
YaoY. G.YeF.QiX. L.ZhangS. C.FangZ. Spin-orbit gap of graphene: First-principles calculationsPhys. Rev. B200775041401(R)10.1103/PhysRevB.75.041401

Yao, Y. G.; Ye, F.; Qi, X. L.; Zhang, S. C.; Fang, Z. Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B 2007, 75, 041401(R).

[122]

Island, J. O.; Cui, X.; Lewandowski, C.; Khoo, J. Y.; Spanton, E. M.; Zhou, H.; Rhodes, D.; Hone, J. C.; Taniguchi, T.; Watanabe, K. et al. Spin-orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 2019, 571, 85–89.

[123]

Wang, D. Y.; Che, S.; Cao, G. X.; Lyu, R.; Watanabe, K.; Taniguchi, T.; Lau, C. N.; Bockrath, M. Quantum Hall effect measurement of spin-orbit coupling strengths in ultraclean bilayer graphene/WSe2 heterostructures. Nano Lett. 2019, 19, 7028–7034.

[124]

Utama, M. I. B.; Koch, R. J.; Lee, K.; Leconte, N.; Li, H. Y.; Zhao, S. H.; Jiang, L. L.; Zhu, J. Y.; Watanabe, K.; Taniguchi, T. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 2021, 17, 184–188.

[125]

Zhang, C. X.; Zhu, T. C.; Kahn, S.; Li, S. W.; Yang, B. R.; Herbig, C.; Wu, X. H.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Visualizing delocalized correlated electronic states in twisted double bilayer graphene. Nat. Commun. 2021, 12, 2516.

[126]

Turkel, S.; Swann, J.; Zhu, Z. Y.; Christos, M.; Watanabe, K.; Taniguchi, T.; Sachdev, S.; Scheurer, M. S.; Kaxiras, E.; Dean, C. R. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 2022, 376, 193–199.

[127]

Tong, L. H.; Tong, Q. J.; Yang, L. Z.; Zhou, Y. Y.; Wu, Q. L.; Tian, Y.; Zhang, L.; Zhang, L. J.; Qin, Z. H.; Yin, L. J. Spectroscopic visualization of flat bands in magic-angle twisted monolayer-bilayer graphene: Coexistence of localization and delocalization. Phys. Rev. Lett. 2022, 128, 126401.

[128]

Lucignano, P.; Alfè, D.; Cataudella, V.; Ninno, D.; Cantele, G. Crucial role of atomic corrugation on the flat bands and energy gaps of twisted bilayer graphene at the magic angle θ ~ 1.08°. Phys. Rev. B 2019, 99, 195419.

[129]

Lu, X. B.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M. A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G. Y. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 2019, 574, 653–657.

[130]

Lopez-Bezanilla, A.; Lado, J. L. Electrical band flattening, valley flux, and superconductivity in twisted trilayer graphene. Phys. Rev. Res. 2020, 2, 033357.

[131]

Stepanov, P.; Das, I.; Lu, X. B.; Fahimniya, A.; Watanabe, K.; Taniguchi, T.; Koppens, F. H. L.; Lischner, J.; Levitov, L.; Efetov, D. K. Untying the insulating and superconducting orders in magic-angle graphene. Nature 2020, 583, 375–378.

[132]

Chou, Y. Z.; Wu, F. C.; Sau, J. D.; Das Sarma, S. Correlation-induced triplet pairing superconductivity in graphene-based moiré systems. Phys. Rev. Lett. 2021, 127, 217001.

[133]

Saito, Y.; Ge, J. Y.; Watanabe, K.; Taniguchi, T.; Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 2020, 16, 926–930.

[134]
PizarroJ. M.RösnerM.ThomaleR.ValentíR.WehlingT. O. Internal screening and dielectric engineering in magic-angle twisted bilayer graphenePhys. Rev. B2019100161102(R)10.1103/PhysRevB.100.161102

Pizarro, J. M.; Rösner, M.; Thomale, R.; Valentí, R.; Wehling, T. O. Internal screening and dielectric engineering in magic-angle twisted bilayer graphene. Phys. Rev. B 2019, 100, 161102(R).

[135]
GoodwinZ. A. H.CorsettiF.MostofiA. A.LischnerJ. Twist-angle sensitivity of electron correlations in moiré graphene bilayersPhys. Rev. B2019100121106(R)10.1103/PhysRevB.100.121106

Goodwin, Z. A. H.; Corsetti, F.; Mostofi, A. A.; Lischner, J. Twist-angle sensitivity of electron correlations in moiré graphene bilayers. Phys. Rev. B 2019, 100, 121106(R).

[136]

Liu, C. C.; Zhang, L. D.; Chen, W. Q.; Yang, F. Chiral spin density wave and d + id superconductivity in the magic-angle-twisted bilayer graphene. Phys. Rev. Lett. 2018, 121, 217001.

[137]

Lake, E.; Senthil, T. Reentrant superconductivity through a quantum Lifshitz transition in twisted trilayer graphene. Phys. Rev. B 2021, 104, 174505.

[138]

Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

[139]

Wu, F. C.; Das Sarma, S. Ferromagnetism and superconductivity in twisted double bilayer graphene. Phys. Rev. B 2020, 101, 155149.

[140]

Wu, F. C.; Das Sarma, S. Quantum geometry and stability of moiré flatband ferromagnetism. Phys. Rev. B 2020, 102, 165118.

[141]

Lin, J. X.; Zhang, Y. H.; Morissette, E.; Wang, Z.; Liu, S.; Rhodes, D.; Watanabe, K.; Taniguchi, T.; Hone, J.; Li, J. I. A. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 2022, 375, 437–441.

[142]

Bultinck, N.; Chatterjee, S.; Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 2020, 124, 166601.

[143]

Zhu, J. H.; Su, J. J.; MacDonald, A. H. Voltage-controlled magnetic reversal in orbital Chern insulators. Phys. Rev. Lett. 2020, 125, 227702.

[144]

Wu, M. H. Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities. ACS Nano 2021, 15, 9229–9237.

[145]

Liu, Z.; Deng, L. J.; Peng, B. Ferromagnetic and ferroelectric two-dimensional materials for memory application. Nano Res. 2021, 14, 1802–1813.

[146]

Fei, Z. Y.; Zhao, W. J.; Palomaki, T. A.; Sun, B. S.; Miller, M. K.; Zhao, Z. Y.; Yan, J. Q.; Xu, X. D.; Cobden, D. H. Ferroelectric switching of a two-dimensional metal. Nature 2018, 560, 336–339.

[147]

Li, L.; Wu, M. H. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 2017, 11, 6382–6388.

[148]

Constantinescu, G.; Kuc, A.; Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 2013, 111, 036104.

[149]

Yang, Q.; Wu, M. H.; Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 2018, 9, 7160–7164.

[150]

Sharma, P.; Xiang, F. X.; Shao, D. F.; Zhang, D. W.; Tsymbal, E. Y.; Hamilton, A. R.; Seidel, J. A room-temperature ferroelectric semimetal. Sci. Adv. 2019, 5, eaax5080.

[151]

Qiu, D.; Gong, C. H.; Wang, S. S.; Zhang, M.; Yang, C.; Wang, X. F.; Xiong, J. Recent advances in 2D superconductors. Adv. Mater. 2021, 33, 2006124.

[152]

He, Q. L.; Pan, L.; Stern, A. L.; Burks, E. C.; Che, X. Y.; Yin, G.; Wang, J.; Lian, B.; Zhou, Q.; Choi, E. S. et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 2017, 357, 294–299.

[153]

Mahoney, A. C.; Colless, J. I.; Peeters, L.; Pauka, S. J.; Fox, E. J.; Kou, X. F.; Pan, L.; Wang, K. L.; Goldhaber-Gordon, D.; Reilly, D. J. Zero-field edge plasmons in a magnetic topological insulator. Nat. Commun. 2017, 8, 1836.

[154]

Lian, B.; Sun, X. Q.; Vaezi, A.; Qi, X. L.; Zhang, S. C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl. Acad. Sci. USA 2018, 115, 10938–10942.

[155]

Viola, G.; DiVincenzo, D. P. Hall effect gyrators and circulators. Phys. Rev. X 2014, 4, 021019.

[156]

Chang, C. Z.; Zhang, J. S.; Feng, X.; Shen, J.; Zhang, Z. C.; Guo, M. H.; Li, K.; Ou, Y. B.; Wei, P.; Wang, L. L. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013, 340, 167–170.

[157]

Li, Y.; Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 2019, 99, 075438.

[158]

Cheng, S. L.; Fan, Z.; Rao, J. J.; Hong, L. Q.; Huang, Q. C.; Tao, R. Q.; Hou, Z. P.; Qin, M. H.; Zeng, M.; Lu, X. B. et al. Highly controllable and silicon-compatible ferroelectric photovoltaic synapses for neuromorphic computing. iScience 2020, 23, 101874.

[159]

Wan, S. Y.; Li, Y.; Li, W.; Mao, X. Y.; Wang, C.; Chen, C.; Dong, J. Y.; Nie, A. M.; Xiang, J. Y.; Liu, Z. Y. et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv. Funct. Mater. 2019, 29, 1808606.

[160]

Si, M. W.; Saha, A. K.; Gao, S. J.; Qiu, G.; Qin, J. K.; Duan, Y. Q.; Jian, J.; Niu, C.; Wang, H. Y.; Wu, W. Z. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2019, 2, 580–586.

[161]

Xue, F.; He, X.; Wang, Z. Y.; Retamal, J. R. D.; Chai, Z.; Jing, L. L.; Zhang, C. H.; Fang, H.; Chai, Y.; Jiang, T. et al. Giant ferroelectric resistance switching controlled by a modulatory terminal for low-power neuromorphic in-memory computing. Adv. Mater. 2021, 33, 2008709.

[162]

Wang, Y. R.; Wang, F.; Wang, Z. X.; Wang, J. J.; Yang, J.; Yao, Y. Y.; Li, N. N.; Sendeku, M. G.; Zhan, X. Y.; Shan, C. X. et al. Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p–n junction. Nano Res. 2021, 14, 4328–4335.

[163]

Lau, C. N.; Bockrath, M. W.; Mak, K. F.; Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 2022, 602, 41–50.

[164]

Huang, Y.; Qiao, J. S.; He, K.; Bliznakov, S.; Sutter, E.; Chen, X. J.; Luo, D.; Meng, F. K.; Su, D.; Decker, J. et al. Interaction of black phosphorus with oxygen and water. Chem. Mater. 2016, 28, 8330–8339.

[165]

Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.

[166]

Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169.

[167]

Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 2012, 12, 3507–3511.

[168]

Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.

[169]

Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir (111). Nano Lett. 2013, 13, 685–690.

[170]

Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.

[171]

Li, L. F.; Lu, S. Z.; Pan, J. B.; Qin, Z. H.; Wang, Y. Q.; Wang, Y. L.; Cao, G. Y.; Du, S. X.; Gao, H. J. Buckled germanene formation on Pt (111). Adv. Mater. 2014, 26, 4820–4824.

[172]

Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al (111). Nano Lett. 2015, 15, 2510–2516.

[173]

Zhang, L.; Bampoulis, P.; Rudenko, A. N.; Yao, Q.; van Houselt, A.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett. 2016, 116, 256804.

[174]

Li, L. F.; Wang, Y. L.; Xie, S. Y.; Li, X. B.; Wang, Y. Q.; Wu, R. T.; Sun, H. B.; Zhang, S. B.; Gao, H. J. Two-dimensional transition metal honeycomb realized: Hf on Ir (111). Nano Lett. 2013, 13, 4671–4674.

[175]

Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

[176]

Wu, X.; Shao, Y.; Liu, H.; Feng, Z. L.; Wang, Y. L.; Sun, J. T.; Liu, C.; Wang, J. O.; Liu, Z. L.; Zhu, S. Y. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407.

[177]

Shao, Y.; Liu, Z. L.; Cheng, C.; Wu, X.; Liu, H.; Liu, C.; Wang, J. O.; Zhu, S. Y.; Wang, Y. Q.; Shi, D. X. et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett. 2018, 18, 2133–2139.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 June 2022
Revised: 19 August 2022
Accepted: 08 September 2022
Published: 15 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2021YFA1400100, 2019YFA0308000, and 2020YFA0308800), the National Natural Science Foundation of China (Nos. 92163206, 61971035, 61725107, 62022089, 52272135, and 12274026), Beijing Natural Science Foundation (No. Z190006), Chongqing Outstanding Youth Fund (No. 2021ZX0400005), and Beijing Institute of Technology Science and Technology Innovation Program Innovative Talent Science and Technology Funding Special Program (No. 2022CX01022).

Return