Journal Home > Volume 15 , Issue 12

The transition from a global economy dependent on fossil fuels to one based on sustainable energy conversion technologies presents the primary challenge of the day. Equipping water electrolyzers and metal-air batteries with earth-abundant bifunctional transition metal (TM) catalysts that efficiently catalyse the hydrogen and oxygen evolution reactions (HER and OER) and the oxygen reduction and evolution reactions (ORR and OER), respectively, reduces the cost and system complexity, while also providing prospects for accelerated scaling and sustainable material reuse. Among the TMs, earth-abundant molybdenum (Mo)-based multifunctional catalysts are especially promising and have attracted considerable attention in recent years. Starting with a brief introduction to HER, OER, and ORR mechanisms and parameters governing their bifunctionality, this comprehensive review focuses on such Mo-based multifunctional catalysts. We review and discuss recent progress achieved through the formation of Mo-based compounds, heterostructures, and nanoscale composites, as well as by doping, defect engineering, and nanoscale sculpting of Mo-based catalysts. The systems discussed in detail are based on Mo chalcogenides, carbides, oxides, nitrides, and phosphides, as well as Mo alloys, highlighting specific opportunities afforded by synergistic interactions of Mo with both non-metals and non-noble metals. Finally, we discuss the future of Mo-based multifunctional electrocatalysts for HER/OER, ORR/OER, and HER/ORR/OER, analysing emerging trends, new opportunities, and underexplored avenues in this promising materials space.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion

Show Author's information Saswati Santra§Verena Streibel§Ian D. Sharp( )
Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany

§ Saswati Santra and Verena Streibel contributed equally to this work.

Abstract

The transition from a global economy dependent on fossil fuels to one based on sustainable energy conversion technologies presents the primary challenge of the day. Equipping water electrolyzers and metal-air batteries with earth-abundant bifunctional transition metal (TM) catalysts that efficiently catalyse the hydrogen and oxygen evolution reactions (HER and OER) and the oxygen reduction and evolution reactions (ORR and OER), respectively, reduces the cost and system complexity, while also providing prospects for accelerated scaling and sustainable material reuse. Among the TMs, earth-abundant molybdenum (Mo)-based multifunctional catalysts are especially promising and have attracted considerable attention in recent years. Starting with a brief introduction to HER, OER, and ORR mechanisms and parameters governing their bifunctionality, this comprehensive review focuses on such Mo-based multifunctional catalysts. We review and discuss recent progress achieved through the formation of Mo-based compounds, heterostructures, and nanoscale composites, as well as by doping, defect engineering, and nanoscale sculpting of Mo-based catalysts. The systems discussed in detail are based on Mo chalcogenides, carbides, oxides, nitrides, and phosphides, as well as Mo alloys, highlighting specific opportunities afforded by synergistic interactions of Mo with both non-metals and non-noble metals. Finally, we discuss the future of Mo-based multifunctional electrocatalysts for HER/OER, ORR/OER, and HER/ORR/OER, analysing emerging trends, new opportunities, and underexplored avenues in this promising materials space.

Keywords: oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, bifunctional electrocatalysts, molybdenum-based electrocatalysts

References(352)

[1]

Zhang, Y. L.; Goh, K.; Zhao, L.; Sui, X. L.; Gong, X. F.; Cai, J. J.; Zhou, Q. Y.; Zhang, H. D.; Li, L.; Kong, F. R. et al. Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries. Nanoscale 2020, 12, 21534–21559.

[2]

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

[3]

Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417–10430.

[4]

Yu, Y. D.; Zhou, J.; Sun, Z. M. Novel 2D transition-metal carbides: Ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 2020, 30, 2000570.

[5]

Ramakrishnan, S.; Balamurugan, J.; Vinothkannan, M.; Kim, A. R.; Sengodan, S.; Yoo, D. J. Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries. Appl. Catal. B: Environ. 2020, 279, 119381.

[6]

Oh, Y. J.; Kim, J. H.; Lee, J. Y.; Park, S. K.; Kang, Y. C. Design of house centipede-like MoC-Mo2C nanorods grafted with N-doped carbon nanotubes as bifunctional catalysts for high-performance Li-O2 batteries. Chem. Eng. J. 2020, 384, 123344.

[7]

Zhai, Y. Y.; Ren, X. R.; Yan, J. Q.; Liu, S. Z. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000096.

[8]

Wang, Z. P.; Huang, J. H.; Wang, L.; Liu, Y. Y.; Liu, W. H.; Zhao, S. L.; Liu, Z. Q. Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202114696.

[9]

Zhang, L. P.; Xia, Z. H. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 2011, 115, 11170–11176.

[10]

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

[11]

Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.

[12]

Prabhakaran, S.; Balamurugan, J.; Kim, N. H.; Lee, J. H. Hierarchical 3D oxygenated cobalt molybdenum selenide nanosheets as robust trifunctional catalyst for water splitting and zinc-air batteries. Small 2020, 16, 2000797.

[13]

Zhang, W. M.; Zhao, X. Y.; Zhao, Y. W.; Zhang, J. Q.; Li, X. T.; Fang, L. D.; Li, L. Mo-doped Zn, Co zeolitic imidazolate framework-derived Co9S8 quantum dots and MoS2 embedded in three-dimensional nitrogen-doped carbon nanoflake arrays as an efficient trifunctional electrocatalysts for the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 10280–10290.

[14]

Bai, J. M.; Meng, T.; Guo, D. L.; Wang, S. G.; Mao, B. G.; Cao, M. H. Co9S8@MoS2 core–shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn-air batteries. ACS Appl. Mater. Interfaces 2018, 10, 1678–1689.

[15]

Wu, T.; Pang, X.; Zhao, S. W.; Xu, S. M.; Liu, Z. Q.; Li, Y. S.; Huang, F. Q. One-step construction of ordered sulfur-terminated tantalum carbide MXene for efficient overall water splitting. Small Struct. 2022, 3, 2100206.

[16]

Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603.

[17]

Xiong, B. Y.; Chen, L. S.; Shi, J. L. Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 2018, 8, 3688–3707.

[18]

Jia, G.; Zhang, W.; Fan, G. Z.; Li, Z. S.; Fu, D. G.; Hao, W. C.; Yuan, C. W.; Zou, Z. G. Three-dimensional hierarchical architectures derived from surface-mounted metal–organic framework membranes for enhanced electrocatalysis. Angew. Chem. 2017, 129, 13969–13973.

[19]

Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.

[20]

Wu, T.; Sun, M. Z.; Huang, B. L. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022, 41, 2169–2183.

[21]

Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.

[22]

Li, S. S.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: Current status and perspectives. J. Mater. Chem. A 2019, 7, 18674–18707.

[23]

Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

[24]

Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

[25]

Sun, T.; Tian, B. B.; Lu, J.; Su, C. L. Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Mater. Chem. A 2017, 5, 18933–18950.

[26]
Mishra, P.; Sudarsanam, P.; Mahapatra, D. M.; Elmekawy, A.; Pant, D.; Singh, L. Progressions in cathodic catalysts for oxygen reduction and hydrogen evolution in bioelectrochemical systems: Molybdenum as the next-generation catalyst. Catal. Rev., in press, https://doi.org/10.1080/01614940.2021.2003085.
[27]

Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.

[28]

Tiwari, A. P.; Yoon, Y.; Novak, T. G.; Azam, A.; Lee, M.; Lee, S. S.; Lee, G. H.; Srolovitz, D. J.; An, K. S.; Jeon, S. Lattice strain formation through spin-coupled shells of MoS2 on Mo2C for bifunctional oxygen reduction and oxygen evolution reaction electrocatalysts. Adv. Mater. Interfaces 2019, 6, 1900948.

[29]

Fan, X. P.; Huang, Y. G.; Wang, H. Q.; Zheng, F. H.; Tan, C. L.; Li, Y.; Lu, X. F.; Ma, Z. L.; Li, Q. Y. Efficacious nitrogen introduction into MoS2 as bifunctional electrocatalysts for long-life Li-O2 batteries. Electrochim. Acta 2021, 369, 137653.

[30]

Xia, Q.; Zhao, L. L.; Li, D. Y.; Wang, J.; Liu, L. L.; Hou, C. X.; Liu, X. M.; Xu, H. R.; Dang, F.; Zhang, J. T. Phase modulation of 1T/2H MoSe2 nanoflowers for highly efficient bifunctional electrocatalysis in rechargeable Li-O2 batteries. J. Mater. Chem. A 2021, 9, 19922–19931.

[31]

Hu, Q.; Liu, X. F.; Zhu, B.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 2018, 50, 212–219.

[32]

Zhang, T. T.; Liu, X. W.; Cui, X.; Chen, M. L.; Liu, S. J.; Geng, B. Y. Colloidal synthesis of Mo-Ni alloy nanoparticles as bifunctional electrocatalysts for efficient overall water splitting. Adv. Mater. Interfaces 2018, 5, 1800359.

[33]

Gao, M. Y.; Yang, C.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Hua, Y. X.; Xu, C. Y.; Dong, P. Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. J. Mater. Chem. A 2017, 5, 5797–5805.

[34]

Sun, Y.; Wang, C. D.; Ding, T.; Zuo, J.; Yang, Q. Fabrication of amorphous CoMoS4 as a bifunctional electrocatalyst for water splitting under strong alkaline conditions. Nanoscale 2016, 8, 18887–18892.

[35]

Fan, H. F.; Huang, J.; Chen, G. L.; Chen, W.; Zhang, R.; Chu, S. J.; Wang, X. Q.; Li, C. R.; Ostrikov, K. K. Hollow Ni-V-Mo chalcogenide nanopetals as bifunctional electrocatalyst for overall water splitting. ACS Sustain Chem. Eng. 2019, 7, 1622–1632.

[36]

Chang, B.; Yang, J.; Shao, Y. L.; Zhang, L.; Fan, W. L.; Huang, B. B.; Wu, Y. Z.; Hao, X. P. Bimetallic NiMoN nanowires with a preferential reactive facet: An ultraefficient bifunctional electrocatalyst for overall water splitting. ChemSusChem 2018, 11, 3198–3207.

[37]

Wang, Y.; Sun, Y.; Yan, F.; Zhu, C. L.; Gao, P.; Zhang, X. T.; Chen, Y. J. Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2018, 6, 8479–8487.

[38]

Wang, B. L.; Shi, F.; Sun, Y. X.; Yan, L. J.; Zhang, X. P.; Wang, B.; Sun, W. Ni-enhanced molybdenum carbide loaded N-doped graphitized carbon as bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2022, 572, 151480.

[39]

Zhang, K. J.; Zhang, L. X.; Chen, X.; He, X.; Wang, X. G.; Dong, S. M.; Han, P. X.; Zhang, C. J.; Wang, S.; Gu, L. et al. Mesoporous cobalt molybdenum nitride: A highly active bifunctional electrocatalyst and its application in lithium-O2 batteries. J. Phys. Chem. C 2013, 117, 858–865.

[40]

Xiong, Q. Z.; Wang, Y.; Liu, P. F.; Zheng, L. R.; Wang, G. Z.; Yang, H. G.; Wong, P. K.; Zhang, H. M.; Zhao, H. J. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 2018, 30, 1801450.

[41]

Gudal, C. C.; Pan, U. N.; Paudel, D. R.; Kandel, M. R.; Kim, N. H.; Lee, J. H. Bifunctional P-intercalated and doped metallic (1T)-copper molybdenum sulfide ultrathin 2D-nanosheets with enlarged interlayers for efficient overall water splitting. ACS Appl. Mater. Interfaces 2022, 14, 14492–14503.

[42]

Wang, W. F.; Yang, Z.; Jiao, F. X.; Gong, Y. Q. (P, W)-codoped MoO2 nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2020, 529, 146987.

[43]

Xue, J. Y.; Li, F. L.; Zhao, Z. Y.; Li, C.; Ni, C. Y.; Gu, H. W.; Young, D. J.; Lang, J. P. In situ generation of bifunctional Fe-doped MoS2 nanocanopies for efficient electrocatalytic water splitting. Inorg. Chem. 2019, 58, 11202–11209.

[44]

Wang, Y.; Williams, T.; Gengenbach, T.; Kong, B.; Zhao, D. Y.; Wang, H. T.; Selomulya, C. Unique hybrid Ni2P/MoO2@MoS2 nanomaterials as bifunctional non-noble-metal electro-catalysts for water splitting. Nanoscale 2017, 9, 17349–17356.

[45]

Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2–Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

[46]

Zheng, M. Y.; Guo, K. L.; Jiang, W. J.; Tang, T.; Wang, X. Y.; Zhou, P. P.; Du, J.; Zhao, Y. Q.; Xu, C. L.; Hu, J. S. When MoS2 meets FeOOH: A “one-stone-two-birds’’ heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. Appl. Catal. B:Environ. 2019, 244, 1004–1012.

[47]

Tian, Y. F.; Xue, X. Y.; Gu, Y.; Yang, Z. X.; Hong, G.; Wang, C. D. Electrodeposition of Ni3Se2/MoSex as a bifunctional electrocatalyst towards highly-efficient overall water splitting. Nanoscale 2020, 12, 23125–23133.

[48]

Li, Y. Q.; Wang, C.; Cui, M.; Xiong, J. B.; Mi, L. W.; Chen, S. R. Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2021, 543, 148804.

[49]

Li, X. P.; Wang, Y.; Wang, J. J.; Da, Y. M.; Zhang, J. F.; Li, L. L.; Zhong, C.; Deng, Y. D.; Han, X. P.; Hu, W. B. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 2003414.

[50]

Gong, Y. Q.; Yang, Z.; Lin, Y.; Wang, J. L.; Pan, H. L.; Xu, Z. F. Hierarchical heterostructure NiCo2O4@CoMoO4/NF as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 16950–16958.

[51]

Li, X. M.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016, 4, 11973–12000.

[52]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[53]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[54]

Zhang, S.; Zhang, X.; Rui, Y.; Wang, R. H.; Li, X. J. Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy Environ. 2021, 6, 458–478.

[55]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[56]

Wei, J. M.; Zhou, M.; Long, A. C.; Xue, Y. M.; Liao, H. B.; Wei, C.; Xu, Z. J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro Lett. 2018, 10, 75.

[57]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

[58]

Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 1972, 39, 163–184.

[59]

Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

[60]

Zhu, J. B.; Xiao, M. L.; Zhang, Y. L.; Jin, Z.; Peng, Z. Q.; Liu, C. P.; Chen, S. L.; Ge, J. J.; Xing, W. Metal–organic framework-induced synthesis of ultrasmall encased NiFe nanoparticles coupling with graphene as an efficient oxygen electrode for a rechargeable Zn-air battery. ACS Catal. 2016, 6, 6335–6342.

[61]

McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

[62]

Liang, Q. H.; Brocks, G.; Bieberle-Hütter, A. Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. J. Phys. Energy 2021, 3, 026001.

[63]

Yan, Z. H.; Liu, H. H.; Hao, Z. M.; Yu, M.; Chen, X.; Chen, J. Electrodeposition of (hydro) oxides for an oxygen evolution electrode. Chem. Sci. 2020, 11, 10614–10625.

[64]

Velasco-Vélez, J. J.; Carbonio, E. A.; Chuang, C. H.; Hsu, C. J.; Lee, J. F.; Arrigo, R.; Hävecker, M.; Wang, R. Z.; Plodinec, M.; Wang, F. R. et al. Surface electron–hole rich species active in the electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 12524–12534.

[65]

Nong, H. N.; Falling, L. J.; Bergmann, A.; Klingenhof, M.; Tran, H. P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408–413.

[66]

Hao, Y. M.; Li, Y. F.; Wu, J. X.; Meng, L. S.; Wang, J. L.; Jia, C. L.; Liu, T.; Yang, X. J.; Liu, Z. P.; Gong, M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 2021, 143, 1493–1502.

[67]

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

[68]

Kuo, D. Y.; Paik, H.; Kloppenburg, J.; Faeth, B.; Shen, K. M.; Schlom, D. G.; Hautier, G.; Suntivich, J. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): A discussion of the sabatier principle and its role in electrocatalysis. J. Am. Chem. Soc. 2018, 140, 17597–17605.

[69]

Ge, X. M.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. L. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts. ACS Catal. 2015, 5, 4643–4667.

[70]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[71]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[72]

Ma, R. G.; Lin, G. X.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G. C.; Yang, M. H.; Wang, J. C. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 2019, 5, 78.

[73]

Kim, Y. T.; Lopes, P. P.; Park, S. A.; Lee, A. Y.; Lim, J.; Lee, H.; Back, S.; Jung, Y.; Danilovic, N.; Stamenkovic, V. et al. Balancing activity, stability and conductivity of nanoporous core–shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 2017, 8, 1449.

[74]

Masa, J.; Andronescu, C.; Schuhmann, W. Electrocatalysis as the nexus for sustainable renewable energy: The gordian knot of activity, stability, and selectivity. Angew. Chem., Int. Ed. 2020, 59, 15298–15312.

[75]

Dastafkan, K.; Meyer, Q.; Chen, X. J.; Zhao, C. Efficient oxygen evolution and gas bubble release achieved by a low gas bubble adhesive iron-nickel vanadate electrocatalyst. Small 2020, 16, 2002412.

[76]

Li, Y. G.; Lu, J. Metal-air batteries: Will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2017, 2, 1370–1377.

[77]

Liu, X. E.; Park, M.; Kim, M. G.; Gupta, S.; Wu, G.; Cho, J. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2015, 54, 9654–9658.

[78]

Moriau, L.; Bele, M.; Marinko, Ž.; Ruiz-Zepeda, F.; Podboršek, G. K.; Šala, M.; Šurca, A. K.; Kovač, J.; Arčon, I.; Jovanovič, P. et al. Effect of the morphology of the high-surface-area support on the performance of the oxygen-evolution reaction for iridium nanoparticles. ACS Catal. 2021, 11, 670–681.

[79]

Xiao, J. W.; Kuang, Q.; Yang, S. H.; Xiao, F.; Wang, S.; Guo, L. Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction. Sci. Rep. 2013, 3, 2300.

[80]

Huang, Z. F.; Wang, J.; Peng, Y. C.; Jung, C. Y.; Fisher, A.; Wang, X. Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: Recent advances and perspectives. Adv. Energy Mater. 2017, 7, 1700544.

[81]

Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.

[82]

Zhu, C. L.; Yin, Z. X.; Lai, W. H.; Sun, Y.; Liu, L. N.; Zhang, X. T.; Chen, Y. J.; Chou, S. L. Fe-Ni-Mo nitride porous nanotubes for full water splitting and Zn-air batteries. Adv. Energy Mater. 2018, 8, 1802327.

[83]

Lu, Q.; Yu, J.; Zou, X. H.; Liao, K. M.; Tan, P.; Zhou, W.; Ni, M.; Shao, Z. P. Self-catalyzed growth of Co, N-codoped CNTs on carbon-encased CoSx surface: A noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 2019, 29, 1904481.

[84]

Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

[85]

Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 2019, 7, 14971–15005.

[86]

Matanovic, I.; Garzon, F. H. Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: A density functional study. Phys. Chem. Chem. Phys. 2018, 20, 14679–14687.

[87]

Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016, 1, 589–594.

[88]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[89]

Zhang, Z.; Ma, X. X.; Tang, J. L. Porous NiMoO4−x/MoO2 hybrids as highly effective electrocatalysts for the water splitting reaction. J. Mater. Chem. A 2018, 6, 12361–12369.

[90]

Goodenough, J. B.; Huang, Y. H. Alternative anode materials for solid oxide fuel cells. J. Power Sources 2007, 173, 1–10.

[91]

Chu, H. Q.; Zhang, D.; Jin, B. W.; Yang, M. Impact of morphology on the oxygen evolution reaction of 3D hollow cobalt-molybdenum nitride. Appl. Catal. B: Environ. 2019, 255, 117744.

[92]

Moon, B. C.; Choi, W. H.; Kim, K. H.; Park, D. G.; Choi, J. W.; Kang, J. K. Ultrafine metallic nickel domains and reduced molybdenum states improve oxygen evolution reaction of NiFeMo electrocatalysts. Small 2019, 15, 1804764.

[93]

Ji, S. C.; Chen, W. S.; Zhao, Z. X.; Yu, X.; Park, H. S. Molybdenum oxynitride nanoparticles on nitrogen-doped CNT architectures for the oxygen evolution reaction. Nanoscale Adv. 2020, 2, 5659–5665.

[94]

Srirapu, V. K. V. P.; Sharma, C. S.; Awasthi, R.; Singh, R. N.; Sinha, A. S. K. Copper-iron-molybdenum mixed oxides as efficient oxygen evolution electrocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 7385–7393.

[95]

Jin, Y. S.; Huang, S. L.; Yue, X.; Du, H. Y.; Shen, P. K. Mo-and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359–2363.

[96]

Zhou, S.; Yang, X. W.; Pei, W.; Liu, N. S.; Zhao, J. J. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 2018, 10, 10876–10883.

[97]

Liu, W. K.; Cai, J. N.; Huang, B. H.; Zhang, X. F.; Lin, S. Synergistic catalytic effects of MoO2 and vulcan carbon on the oxygen reduction reaction. New J. Chem. 2021, 45, 2775–2780.

[98]

Lu, D. L.; Ren, X. H.; Ren, L.; Xue, W. M.; Liu, S. Q.; Liu, Y. D.; Chen, Q.; Qi, X.; Zhong, J. X. Direct vapor deposition growth of 1T′ MoTe2 on carbon cloth for electrocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 3212–3219.

[99]

Li, N.; Wu, J. J.; Lu, Y. T.; Zhao, Z. J.; Zhang, H. C.; Li, X. T.; Zheng, Y. Z.; Tao, X. Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 238, 27–37.

[100]

Frindt, R. F. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 1966, 37, 1928–1929.

[101]

Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

[102]

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. 2011, 123, 11289–11293.

[103]

Zhang, X. Y.; Ma, G. Q.; Wang, J. Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten 2019, 1, 59–79.

[104]

Bosi, M. Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: A review. RSC Adv. 2015, 5, 75500–75518.

[105]

Urbanová, V.; Lazar, P.; Antonatos, N.; Sofer, Z.; Otyepka, M.; Pumera, M. Positive and negative effects of dopants toward electrocatalytic activity of MoS2 and WS2: Experiments and theory. ACS Appl. Mater. Interfaces 2020, 12, 20383–20392.

[106]

Wu, X.; Zhang, H. B.; Zhang, J.; Lou, X. W. Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 2021, 33, 2008376.

[107]

Chia, X.; Eng, A. Y. S.; Ambrosi, A.; Tan, S. M.; Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 2015, 115, 11941–11966.

[108]

Sadighi, Z.; Liu, J. P.; Zhao, L.; Ciucci, F.; Kim, J. K. Metallic MoS2 nanosheets: Multifunctional electrocatalyst for the ORR, OER and Li-O2 batteries. Nanoscale 2018, 10, 22549–22559.

[109]

Andrews, K.; Bowman, A.; Rijal, U.; Chen, P. Y.; Zhou, Z. X. Improved contacts and device performance in MoS2 transistors using a 2D semiconductor interlayer. ACS Nano 2020, 14, 6232–6241.

[110]

Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G. Y.; Sun, Y. B.; Yang, Y.; Ren, T. L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264.

[111]

Jiang, J.; Chen, Z. Z.; Hu, Y.; Xiang, Y.; Zhang, L. F.; Wang, Y. P.; Wang, G. C.; Shi, J. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 2021, 16, 894–901.

[112]

Chen, Y.; Wang, X. D.; Wu, G. J.; Wang, Z.; Fang, H. H.; Lin, T.; Sun, S.; Shen, H.; Hu, W. D.; Wang, J. L. et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 2018, 14, 1703293.

[113]

Kuc, A.; Heine, T. The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chem. Soc. Rev. 2015, 44, 2603–2614.

[114]

Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

[115]

Strachan, J.; Masters, A. F.; Maschmeyer, T. 3R-MoS2 in review: History, status, and outlook. ACS Appl. Energy Mater. 2021, 4, 7405–7418.

[116]

Tributsch, H. Layer-type transition metal dichalcogenides—A new class of electrodes for electrochemical solar cells. Ber. Bunsenges. Phys. Chem. 1977, 81, 361–369.

[117]

Tributsch, H.; Bennett, J. C. Electrochemistry and photochemistry of MoS2 layer crystals. I. J. Electroanal. Chem. Interfacial Electrochem. 1977, 81, 97–111.

[118]

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

[119]

Zhang, J.; Wang, T.; Liu, P.; Liu, S. H.; Dong, R. H.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 2016, 9, 2789–2793.

[120]

Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.

[121]

Zhang, Z. X.; Wang, Y. X.; Leng, X. X.; Crespi, V. H.; Kang, F. Y.; Lv, R. T. Controllable edge exposure of MoS2 for efficient hydrogen evolution with high current density. ACS Appl. Energy Mater. 2018, 1, 1268–1275.

[122]

Xu, Q. C.; Liu, Y.; Jiang, H.; Hu, Y. J.; Liu, H. L.; Li, C. Z. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.

[123]

Zhou, Q.; Feng, J. R.; Peng, X. W.; Zhong, L. X.; Sun, R. C. Porous carbon coupled with an interlaced MoP–MoS2 heterojunction hybrid for efficient hydrogen evolution reaction. J. Energy Chem. 2020, 45, 45–51.

[124]

Chen, Y. C.; Lu, A. Y.; Lu, P.; Yang, X. L.; Jiang, C. M.; Mariano, M.; Kaehr, B.; Lin, O.; Taylor, A.; Sharp, I. D. et al. Structurally deformed MoS2 for electrochemically stable, thermally resistant, and highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1703863.

[125]

Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632–16638.

[126]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[127]

Li, D. Y.; Zhao, L. L.; Xia, Q.; Wang, J.; Liu, X. M.; Xu, H. R.; Chou, S. L. Activating MoS2 nanoflakes via sulfur defect engineering wrapped on CNTs for stable and efficient Li-O2 batteries. Adv. Funct. Mater. 2022, 32, 2108153.

[128]

Lau, T. H. M.; Wu, S.; Kato, R.; Wu, T. S.; Kulhavý, J.; Mo, J. Y.; Zheng, J. W.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical doping of isolated transition metal atoms. ACS Catal. 2019, 9, 7527–7534.

[129]

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

[130]

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

[131]

Wang, L. L.; Liu, X.; Zhang, Q. F.; Zhou, G.; Pei, Y.; Chen, S. H.; Wang, J.; Rao, A. M.; Yang, H. G.; Lu, B. G. Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy 2019, 61, 194–200.

[132]

Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.

[133]

Tang, B. S.; Yu, Z. G.; Seng, H. L.; Zhang, N. D.; Liu, X. X.; Zhang, Y. W.; Yang, W. F.; Gong, H. Simultaneous edge and electronic control of MoS2 nanosheets through Fe doping for an efficient oxygen evolution reaction. Nanoscale 2018, 10, 20113–20119.

[134]

Mosconi, D.; Till, P.; Calvillo, L.; Kosmala, T.; Garoli, D.; Debellis, D.; Martucci, A.; Agnoli, S.; Granozzi, G. Effect of Ni doping on the MoS2 structure and its hydrogen evolution activity in acid and alkaline electrolytes. Surfaces 2019, 2, 531–545.

[135]

Xiong, Q. Z.; Zhang, X.; Wang, H. J.; Liu, G. Q.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem. Commun. 2018, 54, 3859–3862.

[136]

Ding, X. Q.; Li, X. T.; Lv, X. D.; Zheng, Y. Z.; Wu, Q. B.; Ding, H. Y.; Wu, J. J.; Li, R.; Tao, X. Composition engineering-triggered bifunctionality of free-standing coral-like 1T-MoS2 for highly efficient overall water splitting. Energy Technol. 2020, 8, 2000268.

[137]

Sun, T.; Wang, J.; Chi, X.; Lin, Y. X.; Chen, Z. X.; Ling, X.; Qiu, C. T.; Xu, Y. S.; Song, L.; Chen, W. et al. Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal. 2018, 8, 7585–7592.

[138]

Wang, Y. Y.; Wang, M. R.; Lu, Z. S.; Ma, D. W.; Jia, Y. Enabling multifunctional electrocatalysts by modifying the basal plane of unifunctional 1T'-MoS2 with anchored transition metal single atoms. Nanoscale 2021, 13, 13390–13400.

[139]

Liu, C.; Dong, H. L.; Ji, Y. J.; Hou, T. J.; Li, Y. Y. Origin of the catalytic activity of phosphorus doped MoS2 for oxygen reduction reaction (ORR) in alkaline solution: A theoretical study. Sci. Rep. 2018, 8, 13292.

[140]

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. 2016, 128, 6814–6819.

[141]

Shao, D. M.; Li, P. W.; Zhang, R. Z.; Zhao, C. H.; Wang, D. Q.; Zhao, C. J. One-step preparation of Fe-doped Ni3S2/rGO@NF electrode and its superior OER performances. Int. J. Hydrogen Energy 2019, 44, 2664–2674.

[142]

Li, Z. J.; Wang, X. M.; Wang, X. H.; Lin, Y. S.; Meng, A. L.; Yang, L. N.; Li, Q. D. Mn-Cd-S@ amorphous-Ni3S2 hybrid catalyst with enhanced photocatalytic property for hydrogen production and electrocatalytic OER. Appl. Surf. Sci. 2019, 491, 799–806.

[143]

Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. C. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 2019, 29, 1808367.

[144]

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

[145]

Wang, C. P.; Kong, L. J.; Sun, H.; Zhong, M.; Cui, H. J.; Zhang, Y. H.; Wang, D. H.; Zhu, J.; Bu, X. H. Carbon layer coated Ni3S2/MoS2 nanohybrids as efficient bifunctional electrocatalysts for overall water splitting. ChemElectroChem 2019, 6, 5603–5609.

[146]

Li, J. T.; Chu, D.; Baker, D. R.; Dong, H.; Jiang, R. Z.; Tran, D. T. Distorted inverse spinel nickel cobaltite grown on a MoS2 plate for significantly improved water splitting activity. Chem. Mater. 2019, 31, 7590–7600.

[147]

Liu, Y. K.; Hu, B.; Wu, S. D.; Wang, M. H.; Zhang, Z. H.; Cui, B. B.; He, L. H.; Du, M. Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. Appl. Catal. B: Environ. 2019, 258, 117970.

[148]

Xu, X. B.; Zhong, W.; Zhang, L.; Liu, G. X.; Xu, W.; Zhang, Y.; Du, Y. W. NiCo-LDHs derived NiCo2S4 nanostructure coated by MoS2 nanosheets as high-efficiency bifunctional electrocatalysts for overall water splitting. Surf. Coat. Technol. 2020, 397, 126065.

[149]

Ji, D. X.; Peng, S. J.; Fan, L.; Li, L. L.; Qin, X. H.; Ramakrishna, S. Thin MoS2 nanosheets grafted MOFs-derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A 2017, 5, 23898–23908.

[150]

Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

[151]

Amiinu, I. S.; Pu, Z. H.; Liu, X. B.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H. N.; Mu, S. C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1702300.

[152]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[153]

Tsai, C.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156–13164.

[154]

Tang, H.; Dou, K. P.; Kaun, C. C.; Kuang, Q.; Yang, S. H. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. J. Mater. Chem. A 2014, 2, 360–364.

[155]

Masurkar, N.; Thangavel, N. K.; Arava, L. M. R. CVD-grown MoSe2 nanoflowers with dual active sites for efficient electrochemical hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2018, 10, 27771–27779.

[156]

Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

[157]

Zhang, J. Y.; Wang, T. T.; Liu, P. T.; Liu, Y. G.; Ma, J.; Gao, D. Q. Enhanced catalytic activities of metal-phase-assisted 1T@2H-MoSe2 nanosheets for hydrogen evolution. Electrochim. Acta 2016, 217, 181–186.

[158]

Liu, Y. G.; Liu, S.; Li, H. X.; Yu, L. J.; Sun, L.; Xue, J. L.; Xu, R. J.; Chen, G. X. In-situ phase conversion of composited 1T@2H-MoSe2 nanosheets with enhanced HER performance. Mater. Chem. Phys. 2022, 278, 125657.

[159]

Qu, Y. D.; Medina, H.; Wang, S. W.; Wang, Y. C.; Chen, C. W.; Su, T. Y.; Manikandan, A.; Wang, K. Y.; Shih, Y. C.; Chang, J. W. et al. Wafer scale phase-engineered 1T-and 2H-MoSe2/Mo core–shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2016, 28, 9831–9838.

[160]

Deng, S. J.; Yang, F.; Zhang, Q. H.; Zhong, Y.; Zeng, Y. X.; Lin, S. W.; Wang, X. L.; Lu, X. H.; Wang, C. Z.; Gu, L. et al. Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Adv. Mater. 2018, 30, 1802223.

[161]

Deng, S. J.; Ai, C. Z.; Luo, M.; Liu, B.; Zhang, Y.; Li, Y. H.; Lin, S. W.; Pan, G. X.; Xiong, Q. Q.; Liu, Q. et al. Coupled biphase (1T-2H)-MoSe2 on mold spore carbon for advanced hydrogen evolution reaction. Small 2019, 15, 1901796.

[162]

Xiang, T.; Tao, S.; Xu, W. Y.; Fang, Q.; Wu, C. Q.; Liu, D. B.; Zhou, Y.; Khalil, A.; Muhammad, Z.; Chu, W. S. et al. Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: Binder-free and high-performance Li-ion anode. ACS Nano 2017, 11, 6483–6491.

[163]

He, B.; Li, G. Y.; Li, J. J.; Wang, J.; Tong, H.; Fan, Y. Q.; Wang, W. L.; Sun, S. H.; Dang, F. MoSe2@CNT core–shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries. Adv. Energy Mater. 2021, 11, 2003263.

[164]

Upadhyay, S.; Pandey, O. P. Effect of Se content on the oxygen evolution reaction activity and capacitive performance of MoSe2 nanoflakes. Electrochim. Acta 2022, 412, 140109.

[165]

Vikraman, D.; Hussain, S.; Akbar, K.; Karuppasamy, K.; Chun, S. H.; Jung, J.; Kim, H. S. Design of basal plane edges in metal-doped nanostripes-structured MoSe2 atomic layers to enhance hydrogen evolution reaction activity. ACS Sustain Chem. Eng. 2019, 7, 458–469.

[166]

Jain, A.; Sadan, M. B.; Ramasubramaniam, A. Promoting active sites for hydrogen evolution in MoSe2 via transition-metal doping. J. Phys. Chem. C 2020, 124, 12324–12336.

[167]

Qin, Z. M.; Zhao, J. X. 1T-MoSe2 monolayer supported single Pd atom as a highly-efficient bifunctional catalyst for ORR/OER. J. Colloid Interface Sci. 2022, 605, 155–162.

[168]

Li, N.; Zhang, Y. F.; Jia, M. L.; Lv, X. D.; Li, X. T.; Li, R.; Ding, X. Q.; Zheng, Y. Z.; Tao, X. 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochim. Acta 2019, 326, 134976.

[169]

Chen, Z. W.; Wang, W. W.; Huang, S. S.; Ning, P.; Wu, Y.; Gao, C. Y.; Le, T. T.; Zai, J. T.; Jiang, Y.; Hu, Z. J. et al. Well-defined CoSe2@MoSe2 hollow heterostructured nanocubes with enhanced dissociation kinetics for overall water splitting. Nanoscale 2020, 12, 326–335.

[170]

Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

[171]

Rai, R. K.; Sarkar, B.; Ram, R.; Nanda, K. K.; Ravishankar, N. Designed synthesis of a hierarchical MoSe2@WSe2 hybrid nanostructure as a bifunctional electrocatalyst for total water-splitting. Sustainable Energy Fuels 2022, 6, 1708–1718.

[172]

Zong, H.; Yu, K.; Zhu, Z. Q. Heterostructure nanohybrids of Ni-doped MoSe2 coupled with Ti2NTx toward efficient overall water splitting. Electrochim. Acta 2020, 353, 136598.

[173]

Zhang, Z. Y.; Ye, S.; Ji, J.; Li, Z. L.; Wang, F. Core/shell-structured NiMoO4@MoSe2/NixSey nanorod on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. Colloids Surf. A: Physicochem. Eng. Aspects 2020, 599, 124888.

[174]

Oh, N. K.; Seo, J.; Lee, S.; Kim, H. J.; Kim, U.; Lee, J.; Han, Y. K.; Park, H. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nat. Commun. 2021, 12, 4606.

[175]

Gholamvand, Z.; McAteer, D.; Backes, C.; McEvoy, N.; Harvey, A.; Berner, N. C.; Hanlon, D.; Bradley, C.; Godwin, I.; Rovetta, A. et al. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale 2016, 8, 5737–5749.

[176]

Cunningham, G.; Hanlon, D.; McEvoy, N.; Duesberg, G. S.; Coleman, J. N. Large variations in both dark-and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2. Nanoscale 2015, 7, 198–208.

[177]

McGlynn, J. C.; Cascallana-Matías, I.; Fraser, J. P.; Roger, I.; McAllister, J.; Miras, H. N.; Symes, M. D.; Ganin, A. Y. Molybdenum ditelluride rendered into an efficient and stable electrocatalyst for the hydrogen evolution reaction by polymorphic control. Energy Technol. 2018, 6, 345–350.

[178]

Zhou, Y. X.; Jia, L. P.; Feng, Q. L.; Wang, T. X.; Li, X.; Wang, C. M. MoTe2 nanodendrites based on Mo doped reduced graphene oxide/polyimide composite film for electrocatalytic hydrogen evolution in neutral solution. Electrochim. Acta 2017, 229, 121–128.

[179]

Ge, L.; Yuan, H.; Min, Y. X.; Li, L.; Chen, S. Q.; Xu, L.; Goddard III, W. A. Predicted optimal bifunctional electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction using chalcogenide heterostructures based on machine learning analysis of in silico quantum mechanics based high throughput screening. J. Phys. Chem. Lett. 2020, 11, 869–876.

[180]

Xiao, Z. H.; Gan, X. R.; Zhu, T. H.; Lei, D. Y.; Zhao, H. M.; Wang, P. F. Activating the basal planes in 2H-MoTe2 monolayers by incorporating single-atom dispersed N or P for enhanced electrocatalytic overall water splitting. Adv. Sustainable Syst. 2022, 6, 2100515.

[181]

Xiao, Y.; Shen, C. Predicted electrocatalyst properties on metal insulator MoTe2 for hydrogen evolution reaction and oxygen reduction reaction application in fuel cells. Energy Fuels 2021, 35, 8275–8285.

[182]

Gao, C.; Rao, D. W.; Yang, H.; Yang, S. K.; Ye, J. J.; Yang, S. S.; Zhang, C. N.; Zhou, X. C.; Jing, T. Y.; Yan, X. H. Dual transition-metal atoms doping: An effective route to promote the ORR and OER activity on MoTe2. New J. Chem. 2021, 45, 5589–5595.

[183]

Zhang, W. Q.; Wang, J.; Zhao, L. L.; Wang, J. R.; Zhao, M. W. Transition-metal monochalcogenide nanowires: Highly efficient bi-functional catalysts for the oxygen evolution/reduction reactions. Nanoscale 2020, 12, 12883–12890.

[184]

Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 2012, 134, 3025–3033.

[185]

Hwu, H. H.; Chen, J. G. Surface chemistry of transition metal carbides. Chem. Rev. 2005, 105, 185–212.

[186]

Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem. 2014, 126, 6525–6528.

[187]

Xu, Z. Z.; Lv, X. D.; Gu, W. Y.; Li, F. Y. MC2 (M = Y, Zr, Nb, and Mo) monolayers containing C2 dimers: Prediction of anode materials for high-performance sodium ion batteries. Nanoscale Adv. 2021, 3, 6617–6627.

[188]

Lee, J. S.; Oyama, S. T.; Boudart, M. Molybdenum carbide catalysts: I. Synthesis of unsupported powders. J. Catal. 1987, 106, 125–133.

[189]

dos Santos Politi, J. R.; Viñes, F.; Rodriguez, J. A.; Illas, F. Atomic and electronic structure of molybdenum carbide phases: Bulk and low Miller-index surfaces. Phys. Chem. Chem. Phys. 2013, 15, 12617–12625.

[190]

Weidman, M. C.; Esposito, D. V.; Hsu, Y. C.; Chen, J. G. Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J. Power Sources 2012, 202, 11–17.

[191]

Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.

[192]

Michalsky, R.; Zhang, Y. J.; Peterson, A. A. Trends in the hydrogen evolution activity of metal carbide catalysts. ACS Catal. 2014, 4, 1274–1278.

[193]

Regmi, Y. N.; Waetzig, G. R.; Duffee, K. D.; Schmuecker, S. M.; Thode, J. M.; Leonard, B. M. Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials. J. Mater. Chem. A 2015, 3, 10085–10091.

[194]

Huang, J. J.; Wang, J. Y.; Xie, R. K.; Tian, Z. H.; Chai, G. L.; Zhang, Y. W.; Lai, F. L.; He, G. J.; Liu, C. T.; Liu, T. X. et al. A universal pH range and a highly efficient Mo2C-based electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 19879–19886.

[195]

Ouyang, T.; Chen, A. N.; He, Z. Z.; Liu, Z. Q.; Tong, Y. X. Rational design of atomically dispersed nickel active sites in β-Mo2C for the hydrogen evolution reaction at all pH values. Chem. Commun. 2018, 54, 9901–9904.

[196]

Wang, Y. Z.; Ding, Y. M.; Zhang, C. H.; Xue, B. W.; Li, N. W.; Yu, L. Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution. Rare Met. 2021, 40, 2785–2792.

[197]

Luo, Y.; Wang, Z. J.; Fu, Y.; Jin, C.; Wei, Q.; Yang, R. Z. In situ preparation of hollow Mo2C-C hybrid microspheres as bifunctional electrocatalysts for oxygen reduction and evolution reactions. J. Mater. Chem. A 2016, 4, 12583–12590.

[198]

Ge, R. Y.; Huo, J. J.; Sun, M. J.; Zhu, M. Y.; Li, Y.; Chou, S. L.; Li, W. X. Surface and interface engineering: Molybdenum carbide-based nanomaterials for electrochemical energy conversion. Small 2021, 17, 1903380.

[199]

Kwak, W. J.; Lau, K. C.; Shin, C. D.; Amine, K.; Curtiss, L. A.; Sun, Y. K. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano 2015, 9, 4129–4137.

[200]

Wang, H.; Cao, Y. J.; Sun, C.; Zou, G. F.; Huang, J. W.; Kuai, X. X.; Zhao, J. Q.; Gao, L. J. Strongly coupled molybdenum carbide on carbon sheets as a bifunctional electrocatalyst for overall water splitting. ChemSusChem 2017, 10, 3540–3546.

[201]

Regmi, Y. N.; Wan, C.; Duffee, K. D.; Leonard, B. M. Nanocrystalline Mo2C as a bifunctional water splitting electrocatalyst. ChemCatChem 2015, 7, 3911–3915.

[202]

Xu, Y.; Yang, J.; Liao, T.; Ge, R. Y.; Liu, Y.; Zhang, J. J.; Li, Y.; Zhu, M. Y.; Li, S. A.; Li, W. X. Bifunctional water splitting enhancement by manipulating Mo–H bonding energy of transition metal–Mo2C heterostructure catalysts. Chem. Eng. J. 2022, 431, 134126.

[203]

Xing, J. N.; Li, Y.; Guo, S. W.; Jin, T.; Li, H. X.; Wang, Y. J.; Jiao, L. F. Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 2019, 298, 305–312.

[204]

Ni, J. F.; Zhao, Y.; Li, L.; Mai, L. Q. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy 2015, 11, 129–135.

[205]

Qu, K. G.; Zheng, Y.; Jiao, Y.; Zhang, X. X.; Dai, S.; Qiao, S. Z. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1602068.

[206]

Hu, C. G.; Dai, L. M. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672.

[207]

Wohlgemuth, S. A.; White, R. J.; Willinger, M. G.; Titirici, M. M.; Antonietti, M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem. 2012, 14, 1515–1523.

[208]

Luo, X. H.; Zhou, Q. L.; Du, S.; Li, J.; Zhong, J. W.; Deng, X. L.; Liu, Y. L. Porous Co9S8/nitrogen, sulfur-doped carbon@Mo2C dual catalyst for efficient water splitting. ACS Appl. Mater. Interfaces 2018, 10, 22291–22302.

[209]

Cheng, Y.; Xu, C. W.; Jia, L. C.; Gale, J. D.; Zhang, L. L.; Liu, C.; Shen, P. K.; Jiang, S. P. Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Appl. Catal. B: Environ. 2015, 163, 96–104.

[210]

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. 2014, 126, 7409–7413.

[211]

Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Prato, M.; Martín-García, B.; Brescia, R.; Bonaccorso, F. Carbon nanotube-supported MoSe2 holey flake: Mo2C ball hybrids for bifunctional pH-universal water splitting. ACS Nano 2019, 13, 3162–3176.

[212]

Wang, J. Y.; Ouyang, T.; Deng, Y. P.; Hong, Y. S.; Liu, Z. Q. Metallic Mo2C anchored pyrrolic-N induced N-CNTs/NiS2 for efficient overall water electrolysis. J. Power Sources 2019, 420, 108–117.

[213]

Sun, T. T.; Xu, L. B.; Yan, Y. S.; Zakhidov, A. A.; Baughman, R. H.; Chen, J. F. Ordered mesoporous nickel sphere arrays for highly efficient electrocatalytic water oxidation. ACS Catal. 2016, 6, 1446–1450.

[214]

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat. Mater. 2012, 11, 550–557.

[215]

Yu, Z. Y.; Duan, Y.; Gao, M. R.; Lang, C. C.; Zheng, Y. R.; Yu, S. H. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem. Sci. 2017, 8, 968–973.

[216]

Li, M. X.; Zhu, Y.; Wang, H. Y.; Wang, C.; Pinna, N.; Lu, X. F. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv. Energy Mater. 2019, 9, 1803185.

[217]

Ai, L. H.; Su, J. F.; Wang, M.; Jiang, J. Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: An efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain Chem. Eng. 2018, 6, 9912–9920.

[218]

Yuan, S. S.; Xia, M. S.; Liu, Z. P.; Wang, K. W.; Xiang, L. J.; Huang, G. Q.; Zhang, J. Y.; Li, N. Dual synergistic effects between Co and Mo2C in Co/Mo2C heterostructure for electrocatalytic overall water splitting. Chem. Eng. J. 2022, 430, 132697.

[219]

Han, N. N.; Luo, S. W.; Deng, C. W.; Zhu, S.; Xu, Q. J.; Min, Y. L. Defect-rich FeN0.023/Mo2C heterostructure as a highly efficient bifunctional catalyst for overall water-splitting. ACS Appl. Mater. Interfaces 2021, 13, 8306–8314.

[220]

Wang, Y.; Li, K. Y.; Yan, F.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. The integration of Mo2C-embedded nitrogen-doped carbon with Co encapsulated in nitrogen-doped graphene layers derived from metal–organic-frameworks as a multi-functional electrocatalyst. Nanoscale 2019, 11, 12563–12572.

[221]

Wang, S. P.; Bendt, G.; Saddeler, S.; Schulz, S. Synergistic effects of Mo2C-NC@CoxFey core–shell nanoparticles in electrocatalytic overall water splitting reaction. Energy Technol. 2019, 7, 1801121.

[222]

Liang, Q. R.; Jin, H. H.; Wang, Z.; Xiong, Y. L.; Yuan, S.; Zeng, X. C.; He, D. P.; Mu, S. C. Metal–organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy 2019, 57, 746–752.

[223]

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

[224]

Li, X.; Wang, X. L.; Zhou, J.; Han, L.; Sun, C. Y.; Wang, Q. Q.; Su, Z. M. Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal–organic-frameworks for overall water splitting. J. Mater. Chem. A 2018, 6, 5789–5796.

[225]

Anjum, M. A. R.; Lee, M. H.; Lee, J. S. Boron-and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. ACS Catal. 2018, 8, 8296–8305.

[226]

Wei, Z. Q.; Hu, X.; Ning, S. L.; Kang, X. W.; Chen, S. W. Supported heterostructured MoC/Mo2C nanoribbons and nanoflowers as highly active electrocatalysts for hydrogen evolution reaction. ACS Sustain Chem. Eng. 2019, 7, 8458–8465.

[227]

Lin, H. L.; Shi, Z. P.; He, S. N.; Yu, X.; Wang, S. N.; Gao, Q. S.; Tang, Y. Heteronanowires of MoC–Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 2016, 7, 3399–3405.

[228]

Das, D.; Santra, S.; Nanda, K. K. In situ fabrication of a nickel/molybdenum carbide-anchored N-doped graphene/CNT hybrid: An efficient (pre) catalyst for OER and HER. ACS Appl. Mater Interfaces 2018, 10, 35025–35038.

[229]

Geng, B.; Yan, F.; Liu, L. N.; Zhu, C. L.; Li, B.; Chen, Y. J. Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting. Chem. Eng. J. 2021, 406, 126815.

[230]

Wang, Y.; Yan, F.; Ma, X. Z.; Zhu, C. L.; Zhang, X.; Chen, Y. J. Hierarchically 3D bifunctional catalysts assembled with 1D MoC core/branched N-doped CNT arrays for zinc-air batteries. Electrochim. Acta 2021, 367, 137522.

[231]

Zhang, X. P.; Huang, L.; Han, Y. J.; Xu, M.; Dong, S. J. Nitrogen-doped carbon encapsulating γ-MoC/Ni heterostructures for efficient oxygen evolution electrocatalysts. Nanoscale 2017, 9, 5583–5588.

[232]

Guo, Y. N.; Tang, J.; Henzie, J.; Jiang, B.; Qian, H. Y.; Wang, Z. L.; Tan, H. B.; Bando, Y.; Yamauchi, Y. Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo2C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen. Mater. Horiz. 2017, 4, 1171–1177.

[233]

Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q. et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co–Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

[234]

Huang, H.; Kong, L. J.; Liu, M.; He, J.; Shuang, W.; Xu, Y. H.; Bu, X. H. Constructing bifunctional Co/MoC@N-C catalyst via an in-situ encapsulation strategy for efficient oxygen electrocatalysis. J. Energy Chem. 2021, 59, 538–546.

[235]

Zhang, X. Y.; Wang, J. C.; Guo, T.; Liu, T. Y.; Wu, Z. Z.; Cavallo, L.; Cao, Z.; Wang, D. Z. Structure and phase regulation in MoxC (α-MoC1−x/β-Mo2C) to enhance hydrogen evolution. Appl. Catal. B: Environ. 2019, 247, 78–85.

[236]
Yin, P. N.; Cai, H. Z.; Zhang, X.; Chen, B. B.; Liu, Y.; Gao, R.; Shi, C. α-MoC1−x nanorods as an efficient hydrogen evolution reaction electrocatalyst. New J. Chem. 2021, 45, 10396–10401.
[237]

Baek, D. S.; Lee, J.; Kim, J.; Joo, S. H. Metastable phase-controlled synthesis of mesoporous molybdenum carbides for efficient alkaline hydrogen evolution. ACS Catal. 2022, 12, 7415–7426.

[238]

Lin, L.; Sun, Z. M.; Yuan, M. W.; Yang, H.; Li, H. F.; Nan, C. Y.; Jiang, H. Y.; Ge, S. S.; Sun, G. B. α-MoC1−x quantum dots encapsulated in nitrogen-doped carbon for hydrogen evolution reaction at all pH values. ACS Sustain Chem. Eng. 2019, 7, 9637–9645.

[239]

Yu, H.; Dinh, K. N.; Sun, Y. M.; Fan, H. S.; Wang, Y. H.; Jing, Y.; Li, S. Z.; Srinivasan, M.; Yan, Q. Y. Performance-improved Li-O2 batteries by tailoring the phases of MoxC porous nanorods as an efficient cathode. Nanoscale 2018, 10, 14877–14884.

[240]

Xing, Y.; Yang, Y.; Chen, R. J.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Wu, F.; Guo, S. J. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small 2018, 14, 1704366.

[241]

Cui, Z. M.; Li, Y. T.; Fu, G. T.; Li, X.; Goodenough, J. B. Robust Fe3Mo3C supported IrMn clusters as highly efficient bifunctional air electrode for metal-air battery. Adv. Mater. 2017, 29, 1702385.

[242]

Li, Y. Q.; Yin, Z. H.; Cui, M.; Chen, S. R.; Ma, T. L. Bimetallic cobalt molybdenum carbide-cobalt composites as superior bifunctional oxygen electrocatalysts for Zn-air batteries. Mater. Today Energy 2020, 18, 100565.

[243]

d’Heurle, F. M.; Petersson, C. S.; Tsai, M. Y. Observations on the hexagonal form of MoSi2 and WSi2 films produced by ion implantation and on related snowplow effects. J. Appl. Phys. 1980, 51, 5976–5980.

[244]

Petrovic, J. J. Mechanical behavior of MoSi2 and MoSi2 composites. Mater. Sci. Eng.: A 1995, 192–193, 31–37.

[245]

Dang, C. C.; Wang, Y.; He, B.; Zhang, W. B.; Dang, F.; Wang, H. C.; Du, Y. Novel MoSi2 catalysts featuring surface activation as highly efficient cathode materials for long-life Li-O2 batteries. J. Mater. Chem. A 2020, 8, 259–267.

[246]

Streibel, V.; Velasco-Vélez, J. J.; Teschner, D.; Carbonio, E. A.; Knop-Gericke, A.; Schlögl, R.; Jones, T. E. Merging operando and computational X-ray spectroscopies to study the oxygen evolution reaction. Curr. Opin. Electrochem. 2022, 35, 101039.

[247]

Chithambararaj, A.; Yogamalar, N. R.; Bose, A. C. Hydrothermally synthesized h-MoO3 and α-MoO3 nanocrystals: New findings on crystal-structure-dependent charge transport. Cryst. Growth Des. 2016, 16, 1984–1995.

[248]

Bandaru, S.; Saranya, G.; English, N. J.; Yam, C.; Chen, M. Y. Tweaking the electronic and optical properties of α-MoO3 by sulphur and selenium doping—A density functional theory study. Sci. Rep. 2018, 8, 10144.

[249]

Battaglia, C.; Yin, X. T.; Zheng, M.; Sharp, I. D.; Chen, T.; McDonnell, S.; Azcatl, A.; Carraro, C.; Ma, B. W.; Maboudian, R. et al. Hole selective MoOx contact for silicon solar cells. Nano Lett. 2014, 14, 967–971.

[250]

Magnéli, A.; Blomberg-Hansson, B.; Kihlborg, L.; Sundkvist, G. Studies on molybdenum and molybdenum wolfram oxides of the homologous series MenO3n−1. Acta Chem. Scand. 1955, 9, 1382–1390.

[251]

Scanlon, D. O.; Watson, G. W.; Payne, D. J.; Atkinson, G. R.; Egdell, R. G.; Law, D. S. L. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114, 4636–4645.

[252]

Chen, J.; Wei, Q. Phase transformation of molybdenum trioxide to molybdenum dioxide: An in-situ transmission electron microscopy investigation. Int. J. Appl. Ceram. Technol. 2017, 14, 1020–1025.

[253]

Jin, Y. S.; Wang, H. T.; Li, J. J.; Yue, X.; Han, Y. J.; Shen, P. K.; Cui, Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2016, 28, 3785–3790.

[254]

Ma, T. J.; Zhang, M. M.; Liu, H.; Wang, Y. Synthesis of CoMoO4-MoO2 nanohybrids supported on graphene as high-efficiency catalyst for hydrogen evolution. J. Electroanal. Chem. 2019, 844, 78–85.

[255]

Jin, Y. S.; Shen, P. K. Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 20080–20085.

[256]

Tang, Y. J.; Gao, M. R.; Liu, C. H.; Li, S. L.; Jiang, H. L.; Lan, Y. Q.; Han, M.; Yu, S. H. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. 2015, 127, 13120–13124.

[257]

Xie, X.; Lin, L.; Liu, R. Y.; Jiang, Y. F.; Zhu, Q.; Xu, A. W. The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 8055–8061.

[258]

Lyu, F. L.; Bai, Y. C.; Li, Z. W.; Xu, W. J.; Wang, Q. F.; Mao, J.; Wang, L.; Zhang, X. W.; Yin, Y. D. Self-templated fabrication of CoO-MoO2 nanocages for enhanced oxygen evolution. Adv. Funct. Mater. 2017, 27, 1702324.

[259]

Guha, P.; Mohanty, B.; Thapa, R.; Kadam, R. M.; Satyam, P. V.; Jena, B. K. Defect-engineered MoO2 nanostructures as an efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 5208–5218.

[260]

Zhang, C.; Zou, X. L.; Du, Z. G.; Gu, J. N.; Li, S. M.; Li, B.; Yang, S. B. Atomic layers of MoO2 with exposed high-energy (010) facets for efficient oxygen reduction. Small 2018, 14, 1703960.

[261]

Yang, L. J.; Yu, J. Y.; Wei, Z. Q.; Li, G. X.; Cao, L. D.; Zhou, W. J.; Chen, S. W. Co-N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction. Nano Energy 2017, 41, 772–779.

[262]

Qiu, Y.; Liu, S. Q.; Wei, C.; Fan, J. X.; Yao, H.; Dai, L. X.; Wang, G. M.; Li, H.; Su, B. L.; Guo, X. H. Synergistic effect between platinum single atoms and oxygen vacancy in MoO2 boosting pH-universal hydrogen evolution reaction at large current density. Chem. Eng. J. 2022, 427, 131309.

[263]

Wang, B. B.; Zhang, Z.; Zhang, S. S.; Cao, Y. C.; Su, Y.; Liu, S. D.; Tang, W.; Yu, J. X.; Ou, Y.; Xie, S. H. et al. Surface excited MoO2 to master full water splitting. Electrochim. Acta 2020, 359, 136929.

[264]

Qian, G. F.; Yu, G. T.; Lu, J. J.; Luo, L.; Wang, T.; Zhang, C. H.; Ku, R. Q.; Yin, S. B.; Chen, W.; Mu, S. C. Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density. J. Mater. Chem. A 2020, 8, 14545–14554.

[265]

Prakash, N. G.; Dhananjaya, M.; Narayana, A. L.; Shaik, D. P. M. D.; Rosaiah, P.; Hussain, O. M. High performance one dimensional α-MoO3 nanorods for supercapacitor applications. Ceram. Int. 2018, 44, 9967–9975.

[266]

Manibalan, G.; Govindaraj, Y.; Yesuraj, J.; Kuppusami, P.; Murugadoss, G.; Murugavel, R.; Kumar, M. R. Facile synthesis of NiO@ Ni(OH)2-α-MoO3 nanocomposite for enhanced solid-state symmetric supercapacitor application. J. Colloid Interface Sci. 2021, 585, 505–518.

[267]

Luo, Z.; Miao, R.; Huan, T. D.; Mosa, I. M.; Poyraz, A. S.; Zhong, W.; Cloud, J. E.; Kriz, D. A.; Thanneeru, S.; He, J. K. et al. Mesoporous MoO3−x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv. Energy Mater. 2016, 6, 1600528.

[268]

Li, L.; Zhang, T.; Yan, J. Q.; Cai, X. D.; Liu, S. Z. P doped MoO3−x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small 2017, 13, 1700441.

[269]

Liu, W.; Xu, Q.; Yan, P. F.; Chen, J.; Du, Y.; Chu, S. Q.; Wang, J. O. Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: A new protocol by utilization of HxMoO3−x with plasmon resonance. ChemCatChem 2018, 10, 946–950.

[270]

Li, J.; Cheng, Y.; Zhang, J. N.; Fu, J. W.; Yan, W. F.; Xu, Q. Confining Pd nanoparticles and atomically dispersed Pd into defective MoO3 nanosheet for enhancing electro-and photocatalytic hydrogen evolution performances. ACS Appl. Mater. Interfaces 2019, 11, 27798–27804.

[271]

Tariq, M.; Zaman, W. Q.; Sun, W.; Zhou, Z. H.; Wu, Y. Y.; Cao, L. M.; Yang, J. Unraveling the beneficial electrochemistry of IrO2/MoO3 hybrid as a highly stable and efficient oxygen evolution reaction catalyst. ACS Sustain Chem. Eng. 2018, 6, 4854–4862.

[272]

Illathvalappil, R.; George, L.; Kurungot, S. Coexisting few-layer assemblies of NiO and MoO3 deposited on vulcan carbon as an efficient and durable electrocatalyst for water oxidation. ACS Appl. Energy Mater. 2019, 2, 4987–4998.

[273]

Rani, B. J.; Ravi, G.; Yuvakkumar, R.; Ameen, F.; AlNadhari, S.; Hong, S. I. Fabrication and electrochemical OER activity of Ag doped MoO3 nanorods. Mater. Sci. Semicond. Process. 2020, 107, 104818.

[274]

Martins, P. F. B. D.; Ticianelli, E. A. Electrocatalytic activity and stability of platinum nanoparticles supported on carbon-molybdenum oxides for the oxygen reduction reaction. ChemElectroChem 2015, 2, 1298–1306.

[275]

Liu, X.; Wang, H. M.; Chen, S. G.; Qi, X. Q.; Gao, H. L.; Hui, Y.; Bai, Y.; Guo, L.; Ding, W.; Wei, Z. D. SO2-tolerant Pt-MoO3/C catalyst for oxygen reduction reaction. J. Energy Chem. 2014, 23, 358–362.

[276]

Karuppasamy, L.; Chen, C. Y.; Anandan, S.; Wu, J. J. High index surfaces of Au-nanocrystals supported on one-dimensional MoO3-nanorod as a bi-functional electrocatalyst for ethanol oxidation and oxygen reduction. Electrochim. Acta 2017, 246, 75–88.

[277]

Li, K.; Ma, J. W.; Guan, X. L.; He, H. W.; Wang, M.; Zhang, G. L.; Zhang, F. B.; Fan, X. B.; Peng, W. C.; Li, Y. 3D self-supported Ni(PO3)2-MoO3 nanorods anchored on nickel foam for highly efficient overall water splitting. Nanoscale 2018, 10, 22173–22179.

[278]

Jin, L. J.; Xu, H.; Wang, C.; Wang, Y.; Shang, H. Y.; Du, Y. K. Multi-dimensional collaboration promotes the catalytic performance of 1D MoO3 nanorods decorated with 2D NiS nanosheets for efficient water splitting. Nanoscale 2020, 12, 21850–21856.

[279]

Chandrasekaran, S.; Kim, E. J.; Chung, J. S.; Bowen, C. R.; Rajagopalan, B.; Adamaki, V.; Misra, R. D. K.; Hur, S. H. High performance bifunctional electrocatalytic activity of a reduced graphene oxide-molybdenum oxide hybrid catalyst. J. Mater. Chem. A 2016, 4, 13271–13279.

[280]

Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Novel metastable hexagonal MoO3 nanobelts: Synthesis, photochromic, and electrochromic properties. Chem. Mater. 2009, 21, 5681–5690.

[281]

Wang, F. M.; Qi, X. P.; Qin, Z. G.; Yang, H.; Liu, C.; Liang, T. X. Construction of hierarchical Prussian blue analogue phosphide anchored on Ni2P@MoOx nanosheet spheres for efficient overall water splitting. Int. J. Hydrogen Energy 2020, 45, 13353–13364.

[282]

Béjar, J.; Álvarez-Contreras, L.; Guerra-Balcázar, M.; Ledesma-García, J.; Arriaga, L. G.; Arjona, N. Synthesis of a small-size metal oxide mixture based on MoOx and NiO with oxygen vacancies as bifunctional electrocatalyst for oxygen reactions. Appl. Surf. Sci. 2020, 509, 144898.

[283]

Rammal, M. B.; Omanovic, S. Synthesis and characterization of NiO, MoO3, and NiMoO4 nanostructures through a green, facile method and their potential use as electrocatalysts for water splitting. Mater. Chem. Phys. 2020, 255, 123570.

[284]

Rodriguez, J. A.; Hanson, J. C.; Chaturvedi, S.; Maiti, A.; Brito, J. L. Phase transformations and electronic properties in mixed-metal oxides: Experimental and theoretical studies on the behavior of NiMoO4 and MgMoO4. J. Chem. Phys. 2000, 112, 935–945.

[285]

An, L.; Feng, J. R.; Zhang, Y.; Wang, R.; Liu, H. W.; Wang, G. C.; Cheng, F. Y.; Xi, P. X. Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Adv. Funct. Mater. 2019, 29, 1805298.

[286]

Wang, Y. Q.; Zhao, L.; Sui, X. L.; Gu, D. M.; Wang, Z. B. Hierarchical CoP3/NiMoO4 heterostructures on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Ceram. Int. 2019, 45, 17128–17136.

[287]

Li, Y. K.; Zhang, G.; Lu, W. T.; Cao, F. F. Amorphous Ni-Fe-Mo suboxides coupled with Ni network as porous nanoplate array on nickel foam: A highly efficient and durable bifunctional electrode for overall water splitting. Adv. Sci. 2020, 7, 1902034.

[288]

Ahmed, J.; Alam, M.; Khan, M. A. M.; Alshehri, S. M. Bifunctional electro-catalytic performances of NiMoO4-NRs@RGO nanocomposites for oxygen evolution and oxygen reduction reactions. J. King Saud Univ. -Sci. 2021, 33, 101317.

[289]

Wang, Z. J.; Jin, C.; Sui, J.; Li, C.; Yang, R. Z. Phosphorus-doped SrCo0.5Mo0. 5O3 perovskites with enhanced bifunctional oxygen catalytic activities. Int. J. Hydrogen Energy 2018, 43, 20727–20733.

[290]

Muñoz-García, A. B.; Pavone, M. K-doped Sr2Fe1.5Mo0.5O6−δ predicted as a bifunctional catalyst for air electrodes in proton-conducting solid oxide electrochemical cells. J. Mater. Chem. A 2017, 5, 12735–12739.

[291]

Liu, Q.; Dong, X. H.; Xiao, G. L.; Zhao, F.; Chen, F. L. A novel electrode material for symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482.

[292]

Liu, Q.; Xiao, G. L.; Howell, T.; Reitz, T. L.; Chen, F. L. A novel redox stable catalytically active electrode for solid oxide fuel cells. ECS Trans. 2011, 35, 1357–1366.

[293]

Muñoz-García, A. B.; Bugaris, D. E.; Pavone, M.; Hodges, J. P.; Huq, A.; Chen, F. L.; zur Loye, H. C.; Carter, E. A. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6−δ, an electrode material for symmetric solid oxide fuel cells. J. Am. Chem. Soc. 2012, 134, 6826–6833.

[294]

Song, Y.; Zhong, Q.; Tan, W. Y.; Pan, C. Effect of cobalt-substitution Sr2Fe1.5−xCoxMo0.5O6−δ for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochim. Acta 2014, 139, 13–20.

[295]

Khan, R.; Mehran, M. T.; Naqvi, S. R.; Khoja, A. H.; Mahmood, K.; Shahzad, F.; Hussain, S. Role of perovskites as a bi-functional catalyst for electrochemical water splitting: A review. Int. J. Energy Res. 2020, 44, 9714–9747.

[296]

Wang, H. Z.; Zhou, M.; Choudhury, P.; Luo, H. M. Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions—A mini review. Appl. Mater. Today 2019, 16, 56–71.

[297]

Lu, Z. Y.; Qian, L.; Tian, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 2016, 52, 908–911.

[298]

Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

[299]

Zhou, D. J.; Cai, Z.; Lei, X. D.; Tian, W. L.; Bi, Y. M.; Jia, Y.; Han, N. N.; Gao, T. F.; Zhang, Q.; Kuang, Y. et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 2018, 8, 1701905.

[300]

Jeghan, S. M. N.; Kim, J.; Lee, G. Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Appl. Surf. Sci. 2021, 546, 149072.

[301]

Bao, J.; Wang, Z. L.; Xie, J. F.; Xu, L.; Lei, F. C.; Guan, M. L.; Zhao, Y.; Huang, Y. P.; Li, H. M. A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2019, 55, 3521–3524.

[302]

Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703–12706.

[303]

Dong, S. M.; Chen, X.; Zhang, X. Y.; Cui, G. L. Nanostructured transition metal nitrides for energy storage and fuel cells. Coord. Chem. Rev. 2013, 257, 1946–1956.

[304]

Chen, J. G. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities. Chem. Rev. 1996, 96, 1477–1498.

[305]

Choi, J. G.; Brenner, J. R.; Colling, C. W.; Demczyk, B. G.; Dunning, J. L.; Thompson, L. T. Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts. Catal. Today 1992, 15, 201–222.

[306]

Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.

[307]

Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

[308]

Jin, H. Y.; Gu, Q. F.; Chen, B.; Tang, C.; Zheng, Y.; Zhang, H.; Jaroniec, M.; Qiao, S. Z. Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution. Chem 2020, 6, 2382–2394.

[309]

Yin, Z. X.; Sun, Y.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Bimetallic Ni-Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2017, 5, 13648–13658.

[310]

Kreider, M. E.; Stevens, M. B.; Liu, Y. Z.; Patel, A. M.; Statt, M. J.; Gibbons, B. M.; Gallo, A.; Ben-Naim, M.; Mehta, A.; Davis, R. C. et al. Nitride or oxynitride? Elucidating the composition−activity relationships in molybdenum nitride electrocatalysts for the oxygen reduction reaction. Chem. Mater. 2020, 32, 2946–2960.

[311]

Chen, W. F.; Iyer, S.; Iyer, S.; Sasaki, K.; Wang, C. H.; Zhu, Y. M.; Muckerman, J. T.; Fujita, E. Biomass-derived electrocatalytic composites for hydrogen evolution. Energy Environ. Sci. 2013, 6, 1818–1826.

[312]

Xie, J. F.; Xie, Y. Transition metal nitrides for electrocatalytic energy conversion: Opportunities and challenges. Chem.—Eur. J. 2016, 22, 3588–3598.

[313]

Xie, J. F.; Li, S.; Zhang, X. D.; Zhang, J. J.; Wang, R. X.; Zhang, H.; Pan, B. C.; Xie, Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615–4620.

[314]

Xiong, J.; Cai, W. W.; Shi, W. J.; Zhang, X. L.; Li, J.; Yang, Z. H.; Feng, L. G.; Cheng, H. S. Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 24193–24198.

[315]

Shi, X.; Wu, A. P.; Yan, H. J.; Zhang, L.; Tian, C. G.; Wang, L.; Fu, H. G. A “MOFs plus MOFs” strategy toward Co-Mo2N tubes for efficient electrocatalytic overall water splitting. J. Mater. Chem. A 2018, 6, 20100–20109.

[316]

Jia, J. R.; Zhai, M. K.; Lv, J. J.; Zhao, B. X.; Du, H. B.; Zhu, J. J. Nickel molybdenum nitride nanorods grown on Ni foam as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 30400–30408.

[317]

Wang, P.; Qi, J.; Li, C.; Chen, X.; Wang, T. H.; Liang, C. H. N-doped carbon nanotubes encapsulating Ni/MoN heterostructures grown on carbon cloth for overall water splitting. ChemElectroChem 2020, 7, 745–752.

[318]

Zhan, Y. F.; Xie, F. Y.; Zhang, H.; Lin, Z. P.; Huang, J. L.; Zhang, W. H.; Sun, X. L.; Meng, H.; Zhang, Y. L.; Chen, J. Metallic Ni promoted Mo2C-MoN particles supported on N-doped graphitic carbon as bifunctional catalyst for oxygen and hydrogen evolution reaction in alkaline media. J. Electrochem. Soc. 2018, 165, F75–F81.

[319]

Sun, Y.; Zhou, Y. L.; Zhu, Y. P.; Shen, Y. H.; Xie, A. J. In-situ synthesis of petal-like MoO2@MoN/NF heterojunction as both an advanced binder-free anode and an electrocatalyst for lithium ion batteries and water splitting. ACS Sustain Chem. Eng. 2019, 7, 9153–9163.

[320]

Kou, Z. K.; Wang, T. T.; Gu, Q. L.; Xiong, M.; Zheng, L. R.; Li, X.; Pan, Z. H.; Chen, H.; Verpoort, F.; Cheetham, A. K. et al. Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 2019, 9, 1803768.

[321]

Lu, Y. K.; Li, Z. X.; Xu, Y. L.; Tang, L. Q.; Xu, S. J.; Li, D.; Zhu, J. J.; Jiang, D. L. Bimetallic Co-Mo nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 411, 128433.

[322]

Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

[323]

Yin, Z. X.; Sun, Y.; Jiang, Y. J.; Yan, F.; Zhu, C. L.; Chen, Y. J. Hierarchical cobalt-doped molybdenum-nickel nitride nanowires as multifunctional electrocatalysts. ACS Appl. Mater. Interfaces 2019, 11, 27751–27759.

[324]

Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

[325]

Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065.

[326]

Prins, R.; Bussell, M. E. Metal phosphides: Preparation, characterization and catalytic reactivity. Catal. Lett. 2012, 142, 1413–1436.

[327]

Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702–5707.

[328]

McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mater. 2014, 26, 4826–4831.

[329]

Xiao, W. P.; Zhang, L.; Bukhvalov, D.; Chen, Z. P.; Zou, Z. Y.; Shang, L.; Yang, X. F.; Yan, D. Q.; Han, F. Y.; Zhang, T. R. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy 2020, 70, 104445.

[330]

Zhang, L.; Xiao, W. P.; Zhang, Y.; Han, F. Y.; Yang, X. F. Nanocarbon encapsulating Ni-doped MoP/graphene composites for highly improved electrocatalytic hydrogen evolution reaction. Compos. Commun. 2021, 26, 100792.

[331]

Wang, X. D.; Chen, H. Y.; Xu, Y. F.; Liao, J. F.; Chen, B. X.; Rao, H. S.; Kuang, D. B.; Su, C. Y. Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. J. Mater. Chem. A 2017, 5, 7191–7199.

[332]

Xu, H.; Wei, J. J.; Zhang, K.; Shiraishi, Y.; Du, Y. K. Hierarchical NiMo phosphide nanosheets strongly anchored on carbon nanotubes as robust electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 29647–29655.

[333]

Nguyen, D. C.; Tran, D. T.; Luyen Doan, T. L.; Kim, N. H.; Lee, J. H. Constructing MoPx@MnPy heteronanoparticle-supported mesoporous N, P-codoped graphene for boosting oxygen reduction and oxygen evolution reaction. Chem. Mater. 2019, 31, 2892–2904.

[334]

Singh, D.; Mamtani, K.; Bruening, C. R.; Miller, J. T.; Ozkan, U. S. Use of H2S to probe the active sites in FeNC catalysts for the oxygen reduction reaction (ORR) in acidic media. ACS Catal. 2014, 4, 3454–3462.

[335]

Ren, B. W.; Li, D. Q.; Jin, Q. Y.; Cui, H.; Wang, C. X. Integrated 3D self-supported Ni decorated MoO2 nanowires as highly efficient electrocatalysts for ultra-highly stable and large-current-density hydrogen evolution. J. Mater. Chem. A 2017, 5, 24453–24461.

[336]

Govind Rajan, A.; Martirez, J. M. P.; Carter, E. A. Facet-independent oxygen evolution activity of pure β-NiOOH: Different chemistries leading to similar overpotentials. J. Am. Chem. Soc. 2020, 142, 3600–3612.

[337]

Zhao, S. N.; Huang, J. F.; Liu, Y. Y.; Shen, J. H.; Wang, H.; Yang, X. L.; Zhu, Y. H.; Li, C. Z. Multimetallic Ni-Mo/Cu nanowires as nonprecious and efficient full water splitting catalyst. J. Mater. Chem. A 2017, 5, 4207–4214.

[338]

Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Sun, X. P.; He, Y. Q.; Asiri, A. M. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 2015, 3, 20056–20059.

[339]

Qin, F.; Zhao, Z. H.; Alam, K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.

[340]

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

[341]

Hu, K. L.; Wu, M. X.; Hinokuma, S.; Ohto, T.; Wakisaka, M.; Fujita, J. I.; Ito, Y. Boosting electrochemical water splitting via ternary NiMoCo hybrid nanowire arrays. J. Mater. Chem. A 2019, 7, 2156–2164.

[342]

Wang, C. L.; Wang, D. D.; Liu, S.; Jiang, P.; Lin, Z. Y.; Xu, P. P.; Yang, K.; Lu, J.; Tong, H. G.; Hu, L. et al. Engineering the coordination environment enables molybdenum single-atom catalyst for efficient oxygen reduction reaction. J. Catal. 2020, 389, 150–156.

[343]

Gao, J.; Zou, J. X.; Zeng, X. Q.; Ding, W. J. Carbon supported nano Pt-Mo alloy catalysts for oxygen reduction in magnesium-air batteries. RSC Adv. 2016, 6, 83025–83030.

[344]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[345]

Jin, Z. Y.; Lv, J.; Jia, H. L.; Liu, W. H.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Sun, S. H. et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019, 15, 1904180.

[346]

Li, S. Y.; Wang, J. Q.; Lin, X.; Xie, G. Q.; Huang, Y.; Liu, X. J.; Qiu, H. J. Flexible solid-state direct ethanol fuel cell catalyzed by nanoporous high-entropy Al-Pd-Ni-Cu-Mo anode and spinel (AlMnCo)3O4 cathode. Adv. Funct. Mater. 2021, 31, 2007129.

[347]

Qiu, H. J.; Fang, G.; Gao, J. J.; Wen, Y. R.; Lv, J.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 2019, 1, 526–533.

[348]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

[349]

Huang, P. C.; Cheng, M.; Zhang, H. H.; Zuo, M.; Xiao, C.; Xie, Y. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy 2019, 61, 428–434.

[350]

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

[351]

Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

[352]

Du, P.; Hu, K. L.; Lyu, J.; Li, H. L.; Lin, X.; Xie, G. Q.; Liu, X. J.; Ito, Y.; Qiu, H. J. Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Zn-air batteries. Appl. Catal. B: Environ. 2020, 276, 119172.

File
12274_2022_5022_MOESM1_ESM.pdf (249.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 June 2022
Revised: 16 August 2022
Accepted: 05 September 2022
Published: 22 October 2022
Issue date: December 2022

Copyright

© The Author(s) 2022

Acknowledgements

Acknowledgements

This work received support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (No. 864234) and from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2089/1 – 390776260. S. S. acknowledges financial support from the Alexander von Humboldt Foundation.

Rights and permissions

Copyright: 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return