Journal Home > Volume 16 , Issue 6

Lithium metal anodes hold great potential for high-energy-density secondary batteries. However, the uncontrollable lithium dendrite growth causes poor cycling efficiency and severe safety concerns, hindering lithium metal anode from practical application. Electrolyte components play important roles in suppressing lithium dendrite growth and improving the electrochemical performance of long-life lithium metal anode, and it is still challenging to effectively compromise the advantages of the conventional electrolyte (1 mol·L−1 salts) and high-concentration electrolyte (> 3 mol·L−1 salts) for the optimizing electrochemical performance. Herein, we propose and design an interfacial high-concentration electrolyte induced by the nitrogen- and oxygen-doped carbon nanosheets (NO-CNS) for stable Li metal anodes. The NO-CNS with abundant surface negative charges not only creates an interfacial high-concentration of lithium ions near the electrode surface to promote charge-transfer kinetics but also enables a high ionic conductivity in the bulk electrolyte to improve ionic mass-transfer. Benefitting from the interfacial high-concentration electrolyte, the NO-CNS@Ni foam host presents outstanding electrochemical cycling performances over 600 cycles at 1 mA·cm−2 and an improved cycling lifespan of 1,500 h for symmetric cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interfacial high-concentration electrolyte for stable lithium metal anode: Theory, design, and demonstration

Show Author's information Haotian Lu1,2,3,4Chunpeng Yang2,3( )Feifei Wang1,2,3,4Lu Wang1,2,3,4Jinghong Zhou5Wei Chen1,4Quan-Hong Yang1,2,3( )
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
State-Key Laboratory of Chemical Engineering, East China University of Science of Technology, Shanghai 200237, China

Abstract

Lithium metal anodes hold great potential for high-energy-density secondary batteries. However, the uncontrollable lithium dendrite growth causes poor cycling efficiency and severe safety concerns, hindering lithium metal anode from practical application. Electrolyte components play important roles in suppressing lithium dendrite growth and improving the electrochemical performance of long-life lithium metal anode, and it is still challenging to effectively compromise the advantages of the conventional electrolyte (1 mol·L−1 salts) and high-concentration electrolyte (> 3 mol·L−1 salts) for the optimizing electrochemical performance. Herein, we propose and design an interfacial high-concentration electrolyte induced by the nitrogen- and oxygen-doped carbon nanosheets (NO-CNS) for stable Li metal anodes. The NO-CNS with abundant surface negative charges not only creates an interfacial high-concentration of lithium ions near the electrode surface to promote charge-transfer kinetics but also enables a high ionic conductivity in the bulk electrolyte to improve ionic mass-transfer. Benefitting from the interfacial high-concentration electrolyte, the NO-CNS@Ni foam host presents outstanding electrochemical cycling performances over 600 cycles at 1 mA·cm−2 and an improved cycling lifespan of 1,500 h for symmetric cells.

Keywords: lithium metal anode, dendrite growth, interfacial high-concentration electrolyte, surface negative charge

References(50)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Van Noorden, R. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28.

[3]

Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

[4]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[5]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[6]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[7]

Zeng, X. Q.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

[8]

Zhang, Y. F.; Wu, S. C.; Yang, Q. H. Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem 2021, 3, 100063.

[9]

Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.

[10]

Ren, W. C.; Zheng, Y. N.; Cui, Z. H.; Tao, Y. S.; Li, B. X.; Wang, W. T. Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Mater. 2021, 35, 157–168.

[11]

Nan, Y.; Li, S. M.; Han, C.; Yan, H. B.; Ma, Y. X.; Liu, J. H.; Yang, S. B.; Li, B. Interlamellar lithium-ion conductor reformed interface for high performance lithium metal anode. Adv. Funct. Mater. 2021, 31, 2102336.

[12]

Huang, Z. J.; Choudhury, S.; Gong, H. X.; Cui, Y.; Bao, Z. N. A cation-tethered flowable polymeric interface for enabling stable deposition of metallic lithium. J. Am. Chem. Soc. 2020, 142, 21393–21403.

[13]

Jang, E. K.; Ahn, J.; Yoon, S.; Cho, K. Y. High dielectric, robust composite protective layer for dendrite-free and LiPF6 degradation-free lithium metal anode. Adv. Funct. Mater. 2019, 29, 1905078.

[14]

He, Y. T.; Zhang, Y. H.; Sari, H. M. K.; Wang, Z. H.; Lü, Z.; Huang, X. Q.; Liu, Z. G.; Zhang, J. J.; Li, X. F. New insight into Li metal protection: Regulating the Li-ion flux via dielectric polarization. Nano Energy 2021, 89, 106334.

[15]

Xu, Q.; Li, Y. N.; Wu, C. H.; Sun, X. T.; Li, Q.; Zhang, H. B.; Yu, L.; Pan, Y. Y.; Wang, Y. J.; Guo, S. W. et al. Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers. Nano Res. 2022, 15, 6176–6183.

[16]

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

[17]

Zhang, C.; Lv, W.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B.; Lyu, R.; Wu, H. L.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 2018, 8, 1703404.

[18]

Yang, C. P.; Yao, Y. G.; He, S. M.; Xie, H.; Hitz, E.; Hu, L. B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 2017, 29, 1702714.

[19]

Li, S. Y.; Wang, W. P.; Xin, S.; Zhang, J.; Guo, Y. G. A facile strategy to reconcile 3D anodes and ceramic electrolytes for stable solid-state Li metal batteries. Energy Storage Mater. 2020, 32, 458–464.

[20]

Wen, Z. P.; Peng, Y. Y.; Cong, J. L.; Hua, H. M.; Lin, Y. X.; Xiong, J.; Zeng, J.; Zhao, J. B. A stable artificial protective layer for high capacity dendrite-free lithium metal anode. Nano Res. 2019, 12, 2535–2542.

[21]

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

[22]

Xu, Z. X.; Xu, L. Y.; Xu, Z. X.; Deng, Z. P.; Wang, X. L. N, O-codoped carbon nanosheet array enabling stable lithium metal anode. Adv. Funct. Mater. 2021, 31, 2102354.

[23]

Yang, T. Y.; Li, L.; Wu, F.; Chen, R. J. A soft lithiophilic graphene aerogel for stable lithium metal anode. Adv. Funct. Mater. 2020, 30, 2002013.

[24]

Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

[25]

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

[26]

Chen, X. R.; Yao, Y. X.; Yan, C.; Zhang, R.; Cheng, X. B.; Zhang, Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 7743–7747.

[27]

Xu, X. Y.; Liu, Y. Y.; Hwang, J. Y.; Kapitanova, O. O.; Song, Z. X.; Sun, Y. K.; Matic, A.; Xiong, S. Z. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode. Adv. Energy Mater. 2020, 10, 2002390.

[28]

Lee, Y.; Ma, B. Y.; Bai, P. Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels. Energy Environ. Sci. 2020, 13, 3504–3513.

[29]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[30]

Yang, Y. Y. C.; Davies, D. M.; Yin, Y. J.; Borodin, O.; Lee, J. Z.; Fang, C. C.; Olguin, M.; Zhang, Y. H.; Sablina, E. S.; Wang, X. F. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 2019, 3, 1986–2000.

[31]

Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.

[32]

Kremer, L. S.; Danner, T.; Hein, S.; Hoffmann, A.; Prifling, B.; Schmidt, V.; Latz, A.; Wohlfahrt-Mehrens, M. Influence of the electrolyte salt concentration on the rate capability of ultra-thick NCM 622 electrodes. Batteries Supercaps 2020, 3, 1172–1182.

[33]

Jiang, G. X.; Li, F.; Wang, H. P.; Wu, M. G.; Qi, S. H.; Liu, X. H.; Yang, S. C.; Ma, J. M. Perspective on high-concentration electrolytes for lithium metal batteries. Small Struct. 2021, 2, 2000122.

[34]

Xu, Y. L.; Dong, K.; Jie, Y. L.; Adelhelm, P.; Chen, Y. W.; Xu, L.; Yu, P. P.; Kim, J.; Kochovski, Z.; Yu, Z. L. et al. Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: Recent progress, limitations, and future perspectives. Adv. Energy Mater. 2022, 12, 2200398.

[35]

Sodeyama, K.; Yamada, Y.; Aikawa, K.; Yamada, A.; Tateyama, Y. Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte. J. Phys. Chem. C 2014, 118, 14091–14097.

[36]

Hamad, I. A.; Novotny, M. A.; Wipf, D. O.; Rikvold, P. A. A new battery-charging method suggested by molecular dynamics simulations. Phys. Chem. Chem. Phys. 2010, 12, 2740–2743.

[37]

Jorn, R.; Kumar, R.; Abraham, D. P.; Voth, G. A. Atomistic modeling of the electrode–electrolyte interface in Li-ion energy storage systems: Electrolyte structuring. J. Phys. Chem. C 2013, 117, 3747–3761.

[38]

Dewan, S.; Carnevale, V.; Bankura, A.; Eftekhari-Bafrooei, A.; Fiorin, G.; Klein, M. L.; Borguet, E. Structure of water at charged interfaces: A molecular dynamics study. Langmuir 2014, 30, 8056–8065.

[39]

Li, Y. S.; Qi, Y. Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy Environ. Sci. 2019, 12, 1286–1295.

[40]

Lin, L. X.; Xu, Y. X.; Zhang, S. W.; Ross, I. M.; Ong, A. C. M.; Allwood, D. A. Fabrication and luminescence of monolayered boron nitride quantum dots. Small 2014, 10, 60–65.

[41]

Biesheuvel, P. M.; Van Soestbergen, M. Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci. 2007, 316, 490–499.

[42]

Bikerman, J. J. Structure and capacity of electrical double layer. London Edinburgh Dublin Philos. Mag. J. Sci. 1942, 33, 384–397.

[43]

Varghese, J.; Wang, H. N.; Pilon, L. Simulating electric double layer capacitance of mesoporous electrodes with cylindrical pores. J. Electrochem. Soc. 2011, 158, A1106.

[44]

Chen, L.; Zhang, H. W.; Liang, L. Y.; Liu, Z.; Qi, Y.; Lu, P.; Chen, J.; Chen, L. Q. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model. J. Power Sources 2015, 300, 376–385.

[45]

Yang, H. C.; Yang, J. Y.; Bo, Z.; Chen, X.; Shuai, X. R.; Kong, J.; Yan, J. H.; Cen, K. F. Kinetic-dominated charging mechanism within representative aqueous electrolyte-based electric double-layer capacitors. J. Phys. Chem. Lett. 2017, 8, 3703–3710.

[46]

Lu, Z. Y.; Liang, Q. H.; Wang, B.; Tao, Y.; Zhao, Y. F.; Lv, W.; Liu, D. H.; Zhang, C.; Weng, Z.; Liang, J. C. et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes. Adv. Energy Mater. 2019, 9, 1803186.

[47]

Gao, H. L.; Yan, S. C.; Wang, J. J.; Huang, Y. A.; Wang, P.; Li, Z. S.; Zou, Z. G. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 2013, 15, 18077–18084.

[48]

Tong, Z. M.; Huang, L.; Liu, H. P.; Lei, W.; Zhang, H. J.; Zhang, S. W.; Jia, Q. L. Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry. Adv. Funct. Mater. 2021, 31, 2010455.

[49]

Merlet, C.; Péan, C.; Rotenberg, B.; Madden, P. A.; Simon, P.; Salanne, M. Simulating supercapacitors: Can we model electrodes as constant charge surfaces? J. Phys. Chem. Lett. 2013, 4, 264–268.

[50]

Wang, Z. X.; Yang, Y.; Olmsted, D. L.; Asta, M.; Laird, B. B. Evaluation of the constant potential method in simulating electric double-layer capacitors. J. Chem. Phys. 2014, 141, 184102.

File
5018_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 June 2022
Revised: 20 August 2022
Accepted: 05 September 2022
Published: 03 October 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No. 2021YFF0500600), the Haihe Laboratory of Sustainable Chemical Transformations, and the Fundamental Research Funds for the Central Universities. We appreciate Neware Technology Co., Ltd for their battery test systems in the TJU Nanoyang-Neware Joint Laboratory for Energy Innovation.

Return