Journal Home > Volume 16 , Issue 6

The lithium-sulfur (Li-S) technology is the most promising candidate for next-generation batteries due to its high theoretical specific energy and steady progress for applications requiring lightweight batteries such as aviation or heavy electric vehicles. For these applications, however, the rate capability of Li-S cells requires significant improvement. Advanced electrolyte formulations in Li-S batteries enable new pathways for cell development and adjustment of all components. However, their rate capability at pouch cell level is often neither evaluated nor compared to state of the art (SOTA) LiTFSI/dimethoxyethane/dioxolane (LITFSI: lithium-bis(trifluoromethylsulfonyl)imide) electrolyte. Herein, the combination of the sparingly polysulfide (PS) solvating hexylmethylether/1,2-dimethoxyethane (HME/DME) electrolyte and highly conductive carbon nanotube Buckypaper (CNT-BP) with low porosity was evaluated in both coin and pouch cells and compared to dimethoxyethane/dioxolane reference electrolyte. An advanced sulfur transfer melt infiltration was employed for cathode production with CNT-BP. The Li+ ion coordination in the HME/DME electrolyte was investigated by nuclear magnetic resonance (NMR) and Raman spectroscopy. Additionally, ionic conductivity and viscosity was investigated for the pristine electrolyte and a polysulfide-statured solution. Both electrolytes, DME/DOL-1/1 (DOL: 1,3-dioxolane) and HME/DME-8/2, are then combined with CNT-BP and transferred to multi-layered pouch cells. This study reveals that the ionic conductivity of the electrolyte increases drastically over state of (dis)charge especially for DME/DOL electrolyte and lean electrolyte regime leading to a better rate capability for the sparingly polysulfide solvating electrolyte. The evaluation in prototype cells is an important step towards bespoke adaption of Li-S batteries for practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The role of polysulfide-saturation in electrolytes for high power applications of real world Li-S pouch cells

Show Author's information Tom Boenke1,2,§( )Sebastian Kirchhoff1,2,§Florian S. Reuter1,2Florian Schmidt1,2Christine Weller1,2Susanne Dörfler2( )Kai Schwedtmann3Paul Härtel2Thomas Abendroth2Holger Althues2Jan J. Weigand3Stefan Kaskel1,2
Technische Universität Dresden, Chair of Inorganic Chemistry I, Bergstr. 66, 01069 Dresden, Germany
Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstr. 28, 01277 Dresden, Germany
Technische Universität Dresden, Chair of Inorganic Molecular Chemistry, Mommsenstraße 4, 01069 Dresden, Germany

§ Tom Boenke and Sebastian Kirchhoff contributed equally to this work.

Abstract

The lithium-sulfur (Li-S) technology is the most promising candidate for next-generation batteries due to its high theoretical specific energy and steady progress for applications requiring lightweight batteries such as aviation or heavy electric vehicles. For these applications, however, the rate capability of Li-S cells requires significant improvement. Advanced electrolyte formulations in Li-S batteries enable new pathways for cell development and adjustment of all components. However, their rate capability at pouch cell level is often neither evaluated nor compared to state of the art (SOTA) LiTFSI/dimethoxyethane/dioxolane (LITFSI: lithium-bis(trifluoromethylsulfonyl)imide) electrolyte. Herein, the combination of the sparingly polysulfide (PS) solvating hexylmethylether/1,2-dimethoxyethane (HME/DME) electrolyte and highly conductive carbon nanotube Buckypaper (CNT-BP) with low porosity was evaluated in both coin and pouch cells and compared to dimethoxyethane/dioxolane reference electrolyte. An advanced sulfur transfer melt infiltration was employed for cathode production with CNT-BP. The Li+ ion coordination in the HME/DME electrolyte was investigated by nuclear magnetic resonance (NMR) and Raman spectroscopy. Additionally, ionic conductivity and viscosity was investigated for the pristine electrolyte and a polysulfide-statured solution. Both electrolytes, DME/DOL-1/1 (DOL: 1,3-dioxolane) and HME/DME-8/2, are then combined with CNT-BP and transferred to multi-layered pouch cells. This study reveals that the ionic conductivity of the electrolyte increases drastically over state of (dis)charge especially for DME/DOL electrolyte and lean electrolyte regime leading to a better rate capability for the sparingly polysulfide solvating electrolyte. The evaluation in prototype cells is an important step towards bespoke adaption of Li-S batteries for practical applications.

Keywords: high power, pouch cell, lithium-sulfur, polysulfide solubility, electrolyte characterization

References(52)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]
Wild, M.; Offer, G. J. Lithium-Sulfur Batteries; John Wiley & Sons: Chichester, 2019.
DOI
[3]

Dörfler, S.; Walus, S.; Locke, J.; Fotouhi, A.; Auger, D. J.; Shateri, N.; Abendroth, T.; Härtel, P.; Althues, H.; Kaskel, S. Recent progress and emerging application areas for lithium-sulfur battery technology. Energy Technol. 2021, 9, 2000694.

[4]

Boenke, T.; Härtel, P.; Dörfler, S.; Abendroth, T.; Schwotzer, F.; Althues, H.; Kaskel, S. Sulfur transfer melt infiltration for high-power carbon nanotube sheets in lithium-sulfur pouch cells. Batteries Supercaps 2021, 4, 989–1002.

[5]

Qu, C.; Chen, Y. Q.; Yang, X. F.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium. Nano Energy 2017, 39, 262–272.

[6]

Dörfler, S.; Althues, H.; Härtel, P.; Abendroth, T.; Schumm, B.; Kaskel, S. Challenges and key parameters of lithium-sulfur batteries on pouch cell level. Joule 2020, 4, 539–554.

[7]

Cleaver, T.; Kovacik, P.; Marinescu, M.; Zhang, T.; Offer, G. Perspective-commercializing lithium sulfur batteries: Are we doing the right research? J. Electrochem. Soc. 2018, 165, A6029–A6033.

[8]

Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 2004, 151, A1969–A1976.

[9]

Varzi, A.; Thanner, K.; Scipioni, R.; Di Lecce, D.; Hassoun, J.; Dörfler, S.; Altheus, H.; Kaskel, S.; Prehal, C.; Freunberger, S. A. Current status and future perspectives of lithium metal batteries. J. Power Sources 2020, 480, 228803.

[10]

Fotouhi, A.; Auger, D. J.; O’Neill, L.; Cleaver, T.; Walus, S. Lithium-sulfur battery technology readiness and applications—A review. Energies 2017, 10, 1937.

[11]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[12]

Bauer, I.; Thieme, S.; Brückner, J.; Althues, H.; Kaskel, S. Reduced polysulfide shuttle in lithium-sulfur batteries using Nafion-based separators. J. Power Sources 2014, 251, 417–422.

[13]

Pang, Q.; Liang, X.; Shyamsunder, A.; Nazar, L. F. An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule 2017, 1, 871–886.

[14]

Cheng, X. B.; Huang, J. Q.; Zhang, Q. Review-Li metal anode in working lithium-sulfur batteries. J. Electrochem. Soc. 2018, 165, A6058–A6072.

[15]

Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 2012, 70, 344–348.

[16]

Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J. Electrochem. Soc. 2009, 156, A694–A702.

[17]

Schneider, H.; Weiß, T.; Scordilis-Kelley, C.; Maeyer, J.; Leitner, K.; Peng, H. J.; Schmidt, R.; Tomforde, J. Electrolyte decomposition and gas evolution in a lithium-sulfur cell upon long-term cycling. Electrochim. Acta 2017, 243, 26–32.

[18]

Vijayakumar, M.; Govind, N.; Walter, E.; Burton, S. D.; Shukla, A.; Devaraj, A.; Xiao, J.; Liu, J.; Wang, C. M.; Karim, A. et al. Molecular structure and stability of dissolved lithium polysulfide species. Phys. Chem. Chem. Phys. 2014, 16, 10923–10932.

[19]

Kang, N.; Lin, Y. X.; Yang, L.; Lu, D. P.; Xiao, J.; Qi, Y.; Cai, M. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density. Nat. Commun. 2019, 10, 4597.

[20]

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

[21]

Cheng, L.; Curtiss, L. A.; Zavadil, K. R.; Gewirth, A. A.; Shao, Y. Y.; Gallagher, K. G. Sparingly solvating electrolytes for high energy density lithium-sulfur batteries. ACS Energy Lett. 2016, 1, 503–509.

[22]

Cuisinier, M.; Cabelguen, P. E.; Adams, B. D.; Garsuch, A.; Balasubramanian, M.; Nazar, L. F. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries. Energy Environ. Sci. 2014, 7, 2697–2705.

[23]

Weng, W.; Pol, V. G.; Amine, K. Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries. Adv. Mater. 2013, 25, 1608–1615.

[24]

Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J. W.; Ueno, K.; Seki, S.; Serizawa, N. et al. Solvate ionic liquid electrolyte for Li-S batteries. J. Electrochem. Soc. 2013, 160, A1304–A1310.

[25]

Azimi, N.; Xue, Z.; Bloom, I.; Gordin, M. L.; Wang, D. H.; Daniel, T.; Takoudis, C.; Zhang, Z. C. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 9169–9177.

[26]

Weller, C.; Thieme, S.; Härtel, P.; Althues, H.; Kaskel, S. Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application. J. Electrochem. Soc. 2017, 164, A3766–A3771.

[27]

Weller, C.; Pampel, J.; Dörfler, S.; Althues, H.; Kaskel, S. Polysulfide shuttle suppression by electrolytes with low-density for high-energy lithium-sulfur batteries. Energy Technol. 2019, 7, 1900625.

[28]

Yanagi, M.; Ueno, K.; Ando, A.; Li, S. L.; Matsumae, Y.; Liu, J. L.; Dokko, K.; Watanabe, M. Effects of polysulfide solubility and Li ion transport on performance of Li-S batteries using sparingly solvating electrolytes. J. Electrochem. Soc. 2020, 167, 070531.

[29]

Nakanishi, A.; Ueno, K.; Watanabe, D.; Ugata, Y.; Matsumae, Y.; Liu, J. L.; Thomas, M. L.; Dokko, K.; Watanabe, M. Sulfolane-based highly concentrated electrolytes of lithium bis(trifluoromethanesulfonyl)amide: Ionic transport, Li-ion coordination, and Li-S battery performance. J. Phys. Chem. C 2019, 123, 14229–14238.

[30]

Liu, T.; Li, H. J.; Yue, J. M.; Feng, J. N.; Mao, M. L.; Zhu, X. Z.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells. Angew. Chem., Int. Ed. 2021, 60, 17547–17555.

[31]

Di Lecce, D.; Marangon, V.; Du, W. J.; Brett, D. J. L.; Shearing, P. R.; Hassoun, J. The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery. J. Power Sources 2020, 472, 228424.

[32]

Kensy, C.; Schwotzer, F.; Dörfler, S.; Althues, H.; Kaskel, S. Impact of carbon porosity on sulfur conversion in Li-S battery cathodes in a sparingly polysulfide solvating electrolyte. Batteries Supercaps 2021, 4, 823–833.

[33]

Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105–6112.

[34]

Chung, S. H.; Chang, C. H.; Manthiram, A. Robust, ultra-tough flexible cathodes for high-energy Li-S batteries. Small 2016, 12, 939–950.

[35]

Fang, R. P.; Li, G. X.; Zhao, S. Y.; Yin, L. C.; Du, K.; Hou, P. X.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy 2017, 42, 205–214.

[36]

Dibden, J. W.; Smith, J. W.; Zhou, N.; Garcia-Araez, N.; Owen, J. R. Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram. Chem. Commun. 2016, 52, 12885–12888.

[37]

Zhang, T.; Marinescu, M.; O’Neill, L.; Wild, M.; Offer, G. Modeling the voltage loss mechanisms in lithium-sulfur cells: The importance of electrolyte resistance and precipitation kinetics. Phys. Chem. Chem. Phys. 2015, 17, 22581–22586.

[38]

Schmidt, F.; Korzhenko, A.; Härtel, P.; Reuter, F. S.; Ehrling, S.; Dörfler, S.; Abendroth, T.; Althues, H.; Kaskel, S. Influence of external stack pressure on the performance of Li-S pouch cell. J. Phys. Energy 2022, 4, 014004.

[39]

Kawase, A.; Shirai, S.; Yamoto, Y.; Arakawa, R.; Takata, T. Electrochemical reactions of lithium-sulfur batteries: An analytical study using the organic conversion technique. Phys. Chem. Chem. Phys. 2014, 16, 9344–9350.

[40]

Ueno, K.; Tatara, R.; Tsuzuki, S.; Saito, S.; Doi, H.; Yoshida, K.; Mandai, T.; Matsugami, M.; Umebayashi, Y.; Dokko, K. et al. Li+ solvation in glyme-Li salt solvate ionic liquids. Phys. Chem. Chem. Phys. 2015, 17, 8248–8257.

[41]

Kaiser, M. R.; Chou, S.; Liu, H. K.; Dou, S. X.; Wang, C. S.; Wang, J. Z. Structure–property relationships of organic electrolytes and their effects on Li/S battery performance. Adv. Mater. 2017, 29, 1700449.

[42]

Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

[43]

Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

[44]

Zou, Q. L.; Lu, Y. C. Solvent-dictated lithium sulfur redox reactions: An operando UV–vis spectroscopic study. J. Phys. Chem. Lett. 2016, 7, 1518–1525.

[45]

Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Eur. Chem. Bull. 2015, 4, 92–97.

[46]
Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry; Wiley-VCH: Weinheim, 2003.
DOI
[47]

Andersen, A.; Rajput, N. N.; Han, K. S.; Pan, H. L.; Govind, N.; Persson, K. A.; Mueller, K. T.; Murugesan, V. Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane. Chem. Mater. 2019, 31, 2308–2319.

[48]

Hippauf, F.; Nickel, W.; Hao, G. P.; Schwedtmann, K.; Giebeler, L.; Oswald, S.; Borchardt, L.; Doerfler, S.; Weigand, J. J.; Kaskel, S. The importance of pore size and surface polarity for polysulfide adsorption in lithium sulfur batteries. Adv. Mater. Interfaces 2016, 3, 1600508.

[49]

Moon, H.; Mandai, T.; Tatara, R.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Seki, S.; Dokko, K.; Watanabe, M. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-ion and Li-sulfur batteries. J. Phys. Chem. C 2015, 119, 3957–3970.

[50]

Zhang, C.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Moon, H.; Mandai, T.; Umebayashi, Y.; Dokko, K.; Watanabe, M. Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J. Phys. Chem. B 2014, 118, 5144–5153.

[51]

Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791.

[52]

Zheng, J. M.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Adv. Sci. 2017, 4, 1700032.

File
5017_ESM.pdf (816.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 12 April 2022
Revised: 29 August 2022
Accepted: 05 September 2022
Published: 24 October 2022
Issue date: June 2023

Copyright

© The Author(s) 2022

Acknowledgements

Acknowledgements

The research was financed by the German Ministry of Education and Research (BMBF) in the project “HiPoLiS” (No. 03XP0178A). The authors thank Kelly Henze and Peter Fleischer (Fraunhofer IWS) for electrode preparation and cell assembly, Susann Kleber (Fraunhofer IWS) for Raman spectroscopy, and Nelly Weiß and Friedrich Schwotzer (TU Dresden) for TEM and SEM analysis.

Rights and permissions

Copyright: © 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return