Journal Home > Volume 16 , Issue 2

Thermal treatment is a general and efficient way to synthesize intermetallic catalysts and may involve complicated physical processes. So far, the mechanisms leading to the size and composition heterogeneity, as well as the phase segregation behavior in Pt-Co nanoparticles (NPs) are still not well understood. Via in-situ environmental transmission electron microscopy, the formation dynamics and segregation behaviors of Pt-Co alloyed NPs during the thermal treatment were investigated. It is found that Pt-Co NPs on zeolitic imidazolate frameworks-67-derived nanocarbon (NC) are formed consecutively through both particle migration coalescence and the Ostwald ripening process. The existence of Pt NPs is found to affect the movement of Co NPs during their migration. With the help of theoretical calculations, the correlations between the composition and migration of the Pt and Co during the ripening process were uncovered. These complex alloying processes are revealed as key factors leading to the heterogeneity of the synthesized Pt-Co alloyed NPs. Under oxidation environment, the Pt-Co NPs become surface faceted gradually, which can be attributed to the oxygen facilitated relatively higher segregation rate of Co from the (111) surface. This work advances the fundamental understanding of design, synthesis, and durability of the Pt-based nanocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Revealing the dynamics of the alloying and segregation of Pt-Co nanoparticles via in-situ environmental transmission electron microscopy

Show Author's information Xing Li1,2,§Shaobo Cheng1,§Yanghua He3Lixiang Qian4Dmitri Zakharov2Gang Wu3Chongxin Shan1Liang Zhang4( )Dong Su5( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
Center for Combustion Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

§ Xing Li and Shaobo Cheng contributed equally to this work.

Abstract

Thermal treatment is a general and efficient way to synthesize intermetallic catalysts and may involve complicated physical processes. So far, the mechanisms leading to the size and composition heterogeneity, as well as the phase segregation behavior in Pt-Co nanoparticles (NPs) are still not well understood. Via in-situ environmental transmission electron microscopy, the formation dynamics and segregation behaviors of Pt-Co alloyed NPs during the thermal treatment were investigated. It is found that Pt-Co NPs on zeolitic imidazolate frameworks-67-derived nanocarbon (NC) are formed consecutively through both particle migration coalescence and the Ostwald ripening process. The existence of Pt NPs is found to affect the movement of Co NPs during their migration. With the help of theoretical calculations, the correlations between the composition and migration of the Pt and Co during the ripening process were uncovered. These complex alloying processes are revealed as key factors leading to the heterogeneity of the synthesized Pt-Co alloyed NPs. Under oxidation environment, the Pt-Co NPs become surface faceted gradually, which can be attributed to the oxygen facilitated relatively higher segregation rate of Co from the (111) surface. This work advances the fundamental understanding of design, synthesis, and durability of the Pt-based nanocatalysts.

Keywords: alloying, environmental transmission electron microscopy (ETEM), intermetallic catalyst, ripening, segregation dynamics

References(49)

[1]

Sun, X. H.; Zhu, W. H.; Wu, D. X.; Liu, Z. Y.; Chen, X. B.; Yuan, L.; Wang, G. F.; Sharma, R.; Zhou, G. W. Atomic-scale mechanism of unidirectional oxide growth. Adv. Funct. Mater. 2020, 30, 1906504.

[2]

Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.

[3]

Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

[4]

Qiu, Y.; Xin, L.; Li, Y. W.; McCrum, I. T.; Guo, F. M.; Ma, T.; Ren, Y.; Liu, Q.; Zhou, L.; Gu, S. et al. BCC-phased PdCu alloy as a highly active electrocatalyst for hydrogen oxidation in alkaline electrolytes. J. Am. Chem. Soc. 2018, 140, 16580–16588.

[5]

Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.

[6]

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

[7]

He, S. Q.; Liu, Y.; Zhan, H. B.; Guan, L. H. Direct thermal annealing synthesis of ordered Pt alloy nanoparticles coated with a thin N-doped carbon shell for the oxygen reduction reaction. ACS Catal. 2021, 11, 9355–9365.

[8]

Liang, M. C.; Xia, T. Y.; Gao, H.; Zhao, K.; Cao, T. Q.; Deng, M.; Ren, X. Y.; Li, S. F.; Guo, H. Z.; Wang, R. M. Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC. Nano Res. 2022, 15, 1221–1229.

[9]

Jung, W. S.; Lee, W. H.; Oh, H. S.; Popov, B. N. Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 19833–19842.

[10]
CuiY. F.WuY. L.WangZ. X.YaoX. Z.WeiY. P.KangY. Q.DuH. D.LiJ.GanL. Mitigating metal dissolution and redeposition of Pt-Co catalysts in PEM fuel cells: Impacts of structural ordering and particle sizeJ. Electrochem. Soc.202016706452010.1149/1945-7111/ab8407

Cui, Y. F.; Wu, Y. L.; Wang, Z. X.; Yao, X. Z.; Wei, Y. P.; Kang, Y. Q.; Du, H. D.; Li, J.; Gan, L. Mitigating metal dissolution and redeposition of Pt-Co catalysts in PEM fuel cells: Impacts of structural ordering and particle size. J. Electrochem. Soc. 2020, 167, 064520.

[11]

Wang, M.; Leff, A. C.; Li, Y.; Woehl, T. J. Visualizing ligand-mediated bimetallic nanocrystal formation pathways with in situ liquid-phase transmission electron microscopy synthesis. ACS Nano 2021, 15, 2578–2588.

[12]

Fan, H.; Qiu, L.; Fedorov, A.; Willinger, M. G.; Ding, F.; Huang, X. Dynamic state and active structure of Ni-Co catalyst in carbon nanofiber growth revealed by in situ transmission electron microscopy. ACS Nano 2021, 15, 17895–17906.

[13]

Ahmadi, M.; Behafarid, F.; Cui, C. H.; Strasser, P.; Cuenya, B. R. Long-range segregation phenomena in shape-selected bimetallic nanoparticles: Chemical state effects. ACS Nano 2013, 7, 9195–9204.

[14]

Ren, M. R.; Zhang, L. L.; Zhu, Y. D.; Shi, J. L.; Zhao, X. J.; Ren, X. Y.; Li, S. F. Highly efficient catalytic properties of Sc and Fe single atoms stabilized on a honeycomb borophene/Al (111) heterostructure via a dual charge transfer effect. Nanoscale 2021, 13, 5875–5882.

[15]

Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 2016, 15, 1188–1194.

[16]

Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502–1506.

[17]

Dai, S.; You, Y.; Zhang, S. Y.; Cai, W.; Xu, M. J.; Xie, L.; Wu, R. Q.; Graham, G. W.; Pan, X. Q. In situ atomic-scale observation of oxygen-driven core–shell formation in Pt3Co nanoparticles. Nat. Commun. 2017, 8, 204.

[18]

Yang, F.; Zhao, H. F.; Wang, X. W.; Liu, X.; Liu, Q. D.; Liu, X. Y.; Jin, C. H.; Wang, R. M.; Li, Y. Atomic scale stability of tungsten-cobalt intermetallic nanocrystals in reactive environment at high temperature. J. Am. Chem. Soc. 2019, 141, 5871–5879.

[19]

Altantzis, T.; Lobato, I.; De Backer, A.; Béché, A.; Zhang, Y.; Basak, S.; Porcu, M.; Xu, Q.; Sánchez-Iglesias, A.; Liz-Marzán, L. M. et al. Three-dimensional quantification of the facet evolution of Pt nanoparticles in a variable gaseous environment. Nano Lett. 2019, 19, 477–481.

[20]

Xin, H. L.; Alayoglu, S.; Tao, R. Z.; Genc, A.; Wang, C. M.; Kovarik, L.; Stach, E. A.; Wang, L. W.; Salmeron, M.; Somorjai, G. A. et al. Revealing the atomic restructuring of Pt-Co nanoparticles. Nano Lett. 2014, 14, 3203–3207.

[21]

Jiang, Y.; Li, H. B.; Wu, Z. M.; Ye, W. Y.; Zhang, H.; Wang, Y.; Sun, C. H.; Zhang, Z. In situ observation of hydrogen-induced surface faceting for palladium-copper nanocrystals at atmospheric pressure. Angew. Chem., Int. Ed. 2016, 55, 12427–12430.

[22]

Liao, H. B.; Fisher, A.; Xu, Z. J. Surface segregation in bimetallic nanoparticles: A critical issue in electrocatalyst engineering. Small 2015, 11, 3221–3246.

[23]

Suntivich, J.; Xu, Z. C.; Carlton, C. E.; Kim, J.; Han, B. H.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A. et al. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985–7991.

[24]

Menning, C. A.; Hwu, H. H.; Chen, J. G. Experimental and theoretical investigation of the stability of Pt-3d-Pt (111) bimetallic surfaces under oxygen environment. J. Phys. Chem. B 2006, 110, 15471–15477.

[25]

Menning, C. A.; Chen, J. G. Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt (111) and Pt-3d-Pt (100) bimetallic structures. J. Chem. Phys. 2008, 128, 164703.

[26]

Hayashi, H.; Côté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Zeolite a imidazolate frameworks. Nat. Mater. 2007, 6, 501–506.

[27]

Zhang, H. G.; Li, J. Z.; Tan, Q.; Lu, L. L.; Wang, Z. B.; Wu, G. Metal-organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: Progress, challenges, and perspectives. Chem. Eur. J. 2018, 24, 18137–18157.

[28]

Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K. T.; He, Y. H.; Karakalos, S.; Zhang, H. G.; Spendelow, J. S.; Su, D.; Wu, G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 2018, 18, 4163–4171.

[29]

Wang, X.; Yu, L.; Guan, B. Y.; Song, S. Y.; Lou, X. W. D. Metal-organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution. Adv. Mater. 2018, 30, 1801211.

[30]

Ren, Q.; Wang, H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 2018, 5, 1700515.

[31]

Wang, Z. L.; Ke, X. X.; Zhou, K. L.; Xu, X. L.; Jin, Y. H.; Wang, H.; Sui, M. L. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 18515–18525.

[32]

Zhou, Y.; Deng, X.; Xing, H. N.; Zhao, H. Y.; Liu, Y. B.; Guo, L. S.; Feng, J.; Feng, W.; Zong, Y.; Zhu, X. H. et al. Dynamically observing the formation of MOFs-driven Co/N-doped carbon nanocomposites by in-situ transmission electron microscope and their application as high-efficient microwave absorbent. Nano Res. 2022, 15, 6830.

[33]

Li, X.; He, Y. H.; Cheng, S. B.; Li, B. Y.; Zeng, Y. C.; Xie, Z. H.; Meng, Q. P.; Ma, L.; Kisslinger, K.; Tong, X. et al. Atomic structure evolution of Pt-Co binary catalysts: Single metal sites versus intermetallic nanocrystals. Adv. Mater. 2021, 33, 2106371.

[34]

Yu, S. U.; Park, B.; Cho, Y.; Hyun, S.; Kim, J. K.; Kim, K. S. Simultaneous visualization of graphene grain boundaries and wrinkles with structural information by gold deposition. Nano Lett. 2014, 8, 8662–8668.

[35]

Pandey, P. A.; Bell, G. R.; Rourke, J. P.; Sanchez, A. M.; Elkin, M. D.; Hickey, B. J.; Wilson, N. R. Physical vapor deposition of metal nanoparticles on chemically modified graphene: Observations on Metal-Graphene interactions. Small 2011, 7, 3202–3210.

[36]

Koga, K.; Ikeshoji, T.; Sugawara, K. I. Size- and temperature-dependent structural transitions in gold nanoparticles. Phys. Rev. Lett. 2004, 92, 115507.

[37]

Levitas, V. I.; Samani, K. Size and mechanics effects in surface-induced melting of nanoparticles. Nat. Commun. 2011, 2, 284.

[38]

Mu, J.; Zhu, Z. W.; Zhang, H. F.; Fu, H. M.; Wang, A. M.; Li, H.; Hu, Z. Q. Size dependent melting behaviors of nanocrystalline in particles embedded in amorphous matrix. J. Appl. Phys. 2012, 111, 043515.

[39]

Kim, K.; Voorhees, P. W. Ostwald ripening of spheroidal particles in multicomponent alloys. Acta Mater. 2018, 152, 327–337.

[40]

Burlakov, V. M.; Kantorovich, L. Ostwald ripening of binary alloy particles. J. Chem. Phys. 2011, 134, 024521.

[41]

Di Vece, M.; Bals, S.; Verbeeck, J.; Lievens, P.; Van Tendeloo, G. Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation. Phys. Rev. B 2009, 80, 125420.

[42]

Alloyeau, D.; Prévot, G.; Le Bouar, Y.; Oikawa, T.; Langlois, C.; Loiseau, A.; Ricolleau, C. Ostwald ripening in nanoalloys: When thermodynamics drives a size-dependent particle composition. Phys. Rev. Lett. 2010, 105, 255901.

[43]

Panizon, E.; Ferrando, R. Preferential Faceting of coherent interfaces in binary nanocrystals. Phys. Rev. B 2014, 90, 201410.

[44]

Huang, S. D.; Shang, C.; Kang, P. L.; Zhang, X. J.; Liu, Z. P. LASP: Fast global potential energy surface exploration. WIREs Comput. Mol. Sci. 2019, 9, e1415.

[45]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[46]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[47]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[48]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[49]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

Video
12274_2022_5012_MOESM1_ESM.mp4
12274_2022_5012_MOESM2_ESM.mp4
12274_2022_5012_MOESM3_ESM.mp4
File
12274_2022_5012_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 July 2022
Revised: 29 August 2022
Accepted: 04 September 2022
Published: 05 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Nos. 52072345, U21A20328, 22103047, and 12174348), the China Postdoctoral Science Foundation (No. 2021T140621), the Natural Science Foundation of Henan Province (No. 222300420077), and Henan Center for Outstanding Overseas Scientists (No. GZS201903). D. S. acknowledges the support from Strategic Priority Research Program (B) (No. XDB33030200) of Chinese Academy of Sciences. The electron microscopy work was performed at the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

Return