Journal Home > Volume 16 , Issue 2

Charging the LiCoO2 (LCO) cathode to a higher voltage, for example 4.5 V compared to the commonly used 4.2 V, is now intensively pursued so as to achieve a higher specific capacity. However, it suffers severe surface structural degradation and detrimental interfacial side reactions between cathode and electrolyte, which lead to the fast capacity fading during long-term cycling. Here, a surface coating strategy was developed for the protection of 4.5 V LCO by constructing a manganese oxides (MOs) nanoshell around LCO particles, which was achieved through a solution-based coating process with success in controlling the growth kinetics of the coating species. We found that the introduction of the MOs nanoshell is highly effective in alleviating the organic electrolyte decomposition at the cathode surface, thus ensuring a much more stable LiF-rich cathode-electrolyte interface and an obvious lower interfacial resistance during electrochemical cycling. Meanwhile, this protection layer can effectively improve the structural stability of the cathode by hindering the cracks formation and structural degradation of LCO particles. Therefore, the MOs modified LCO exhibited excellent rate performance and a high discharge capacity retention of 81.5% after 100 cycles at 1 C compared with the untreated LCO (55.2%), as well as the improved thermal stability and cyclability at the elevated temperature. It is expected that this discovery and fundamental understanding of the surface chemistry regulation strategy provide promising insights into improving the reversibility and stability of LCO cathode at the cut-off voltage of 4.5 V.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stable 4.5 V LiCoO2 cathode material enabled by surface manganese oxides nanoshell

Show Author's information Jun Wang1,2Si-Dong Zhang1,2Si-Jie Guo1,2Si-Qi Lu1,2Yan-Song Xu1Jin-Yang Li1An-Min Cao1,2( )Li-Jun Wan1,2
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
University of Chinese Academy of Sciences (UCAS), Beijing 100049, China

Abstract

Charging the LiCoO2 (LCO) cathode to a higher voltage, for example 4.5 V compared to the commonly used 4.2 V, is now intensively pursued so as to achieve a higher specific capacity. However, it suffers severe surface structural degradation and detrimental interfacial side reactions between cathode and electrolyte, which lead to the fast capacity fading during long-term cycling. Here, a surface coating strategy was developed for the protection of 4.5 V LCO by constructing a manganese oxides (MOs) nanoshell around LCO particles, which was achieved through a solution-based coating process with success in controlling the growth kinetics of the coating species. We found that the introduction of the MOs nanoshell is highly effective in alleviating the organic electrolyte decomposition at the cathode surface, thus ensuring a much more stable LiF-rich cathode-electrolyte interface and an obvious lower interfacial resistance during electrochemical cycling. Meanwhile, this protection layer can effectively improve the structural stability of the cathode by hindering the cracks formation and structural degradation of LCO particles. Therefore, the MOs modified LCO exhibited excellent rate performance and a high discharge capacity retention of 81.5% after 100 cycles at 1 C compared with the untreated LCO (55.2%), as well as the improved thermal stability and cyclability at the elevated temperature. It is expected that this discovery and fundamental understanding of the surface chemistry regulation strategy provide promising insights into improving the reversibility and stability of LCO cathode at the cut-off voltage of 4.5 V.

Keywords: surface coating, lithium-ion battery, manganese oxides, 4.5 V LiCoO2, interfacial stability regulation

References(41)

[1]

Lee, J.; Kitchaev, D. A.; Kwon, D. H.; Lee, C. W.; Papp, J. K.; Liu, Y. S.; Lun, Z.; Clément, R. J.; Shi, T.; McCloskey, B. D. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 2018, 556, 185–190.

[2]

Liu, Y. C.; Chen, Y. F.; Wang, J.; Wang, W.; Ding, Z. Y.; Li, L. Y.; Zhang, Y.; Deng, Y. D.; Wu, J. W.; Chen, Y. N. Hierarchical yolk-shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2022, 15, 3178–3186.

[3]

Zhang, H.; Wang, L.; He, X. M. Trends in a study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1–xyO2 cathode materials. Battery Energy 2022, 1, 20210011.

[4]

Chen, M. Y.; Ma, X. T.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 2019, 3, 2622–2646.

[5]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[6]

Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

[7]

Li, W. D.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34.

[8]

Ryu, H. H.; Sun, H. H.; Myung, S. T.; Yoon, C. S.; Sun, Y. K. Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy Environ. Sci. 2021, 14, 844–852.

[9]

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x<–1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

DOI
[10]

Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943.

[11]

Fu, A.; Zhang, Z. F.; Lin, J. D.; Zou, Y.; Qin, C. D.; Xu, C. J.; Yan, P. F.; Zhou, K.; Hao, J. L.; Yang, X. R. et al. Highly stable operation of LiCoO2 at cut-off ≥ 4.6 V enabled by synergistic structural and interfacial manipulation. Energy Storage Mater. 2022, 46, 406–416.

[12]

Li, J. Y.; Lin, C.; Weng, M. Y.; Qiu, Y.; Chen, P. H.; Yang, K.; Huang, W. Y.; Hong, Y. X.; Li, J.; Zhang, M. J. et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 2021, 16, 599–605.

[13]

Zhang, J. N.; Li, Q. H.; Wang, Y.; Zheng, J. Y.; Yu, X. Q.; Li, H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 2018, 14, 1–7.

[14]

Mao, S. L.; Shen, Z. Y.; Zhang, W. D.; Wu, Q.; Wang, Z. Y.; Lu, Y. Y. Outside-in nanostructure fabricated on LiCoO2 surface for high-voltage lithium-ion batteries. Adv. Sci. (Weinh. ) 2022, 9, 2104841.

[15]

Nie, K. H.; Wang, X. L.; Qiu, J. L.; Wang, Y.; Yang, Q.; Xu, J. J.; Yu, X. Q.; Li, H.; Huang, X. J.; Chen, L. Q. Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode. ACS Energy Lett. 2020, 5, 826–832.

[16]

Ensling, D.; Cherkashinin, G.; Schmid, S.; Bhuvaneswari, S.; Thissen, A.; Jaegermann, W. Nonrigid band behavior of the electronic structure of LiCoO2 thin film during electrochemical Li deintercalation. Chem. Mater. 2014, 26, 3948–3956.

[17]

Wang, Y.; Zhang, Q. H.; Xue, Z. C.; Yang, L. F.; Wang, J. Y.; Meng, F. Q.; Li, Q. H.; Pan, H. Y.; Zhang, J. N.; Jiang, Z. et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv. Energy Mater. 2020, 10, 2001413.

[18]

Cho, J.; Kim, Y. W.; Kim, B.; Lee, J. G.; Park, B. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angew. Chem., Int. Ed. 2003, 42, 1618–1621.

[19]

Xie, J.; Zhao, J.; Liu, Y. Y.; Wang, H. T.; Liu, C.; Wu, T.; Hsu, P. C.; Lin, D. C.; Jin, Y.; Cui, Y. Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. Nano Res. 2017, 10, 3754–3764.

[20]

Lee, K. T.; Jeong, S.; Cho, J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res. 2013, 46, 1161–1170.

[21]

Wang, L. L.; Chen, B. B.; Ma, J.; Cui, G. L.; Chen, L. Q. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 2018, 47, 6505–6602.

[22]

Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 2021, 38, 309–328.

[23]

Cho, J.; Kim, Y. J.; Kim, T. J.; Park, B. Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem., Int. Ed. 2001, 40, 3367–3369.

DOI
[24]

Kaliyappan, K.; Liu, J.; Xiao, B. W.; Lushington, A.; Li, R. Y.; Sham, T. K.; Sun, X. L. Enhanced performance of P2-Na0.66(Mn0. 54Co0. 13Ni0. 13)O2 cathode for sodium-ion batteries by ultrathin metal oxide coatings via atomic layer deposition. Adv. Funct. Mater. 2017, 27, 1701870.

[25]

Cho, J.; Kim, Y. J.; Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 2000, 12, 3788–3791.

[26]

Wang, F. Q.; Jiang, Y.; Lin, S. L.; Wang, W.; Hu, C. H.; Wei, Y. M.; Mao, B. W.; Liang, C. D. High-voltage performance of LiCoO2 cathode studied by single particle microelectrodes-influence of surface modification with TiO2. Electrochim. Acta 2019, 295, 1017–1026.

[27]

Zhang, W.; Chi, Z. X.; Mao, W. X.; Lv, R. W.; Cao, A. M.; Wan, L. J. One-nanometer-precision control of Al2O3 nanoshells through a solution-based synthesis route. Angew. Chem., Int. Ed. 2014, 53, 12776–12780.

[28]

Ding, B. B.; Zheng, P.; Ma, P. A.; Lin, J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications. Adv. Mater. 2020, 32, 1905823.

[29]

Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728.

[30]

Liu, X. C.; Piao, J. Y.; Bin, D. S.; Zhang, T. Q.; Duan, S. Y.; Wu, Z. X.; Cao, A. M.; Wan, L. J. Controlled formation of uniform nanoshells of manganese oxide and their potential in lithium ion batteries. Chem. Commun. 2017, 53, 2846–2849.

[31]

Baca, S. G.; Malaestean, I. L.; Keene, T. D.; Adams, H.; Ward, M. D.; Hauser, J.; Neels, A.; Decurtins, S. One-dimensional manganese coordination polymers composed of polynuclear cluster blocks and polypyridyl linkers: Structures and properties. Inorg. Chem. 2008, 47, 11108–11119.

[32]

Ahuja, I. S.; Yadava, C. L.; Singh, R. S. Tructural information on manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) sulphate complexes with hexamethylenetetramine (a potentially tetradentate ligand) from their magnetic moments, electronic and infrared spectra. J. Mol. Struct. 1982, 81, 229–234.

[33]

Liu, S. T.; Zhou, J. S.; Song, H. H. 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 2018, 8, 1800569.

[34]

Maghami, M.; Farzaneh, F.; Simpson, J.; Moazeni, A. Synthesis, characterization and crystal structure of a cobalt (II) coordination polymer with 2, 4, 6-tris(2-pyridyl)-1, 3, 5-triazine and its use as an epoxidation catalyst. Polyhedron 2014, 73, 22–29.

[35]

Kirillov, A. M. Hexamethylenetetramine: An old new building block for design of coordination polymers. Coord. Chem. Rev. 2011, 255, 1603–1622.

[36]

Lee, S. H.; Jung, J. M.; Ok, J. H.; Park, C. H. Thermal studies of charged cathode material (LixCoO2) with temperature-programmed decomposition-mass spectrometry. J. Power Sources 2010, 195, 5049–5051.

[37]

Nie, K. H.; Sun, X. R.; Wang, J. Y.; Wang, Y.; Qi, W. B.; Xiao, D. D.; Zhang, J. N.; Xiao, R. J.; Yu, X. Q.; Li, H. et al. Realizing long-term cycling stability and superior rate performance of 4.5 V-LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. J. Power Sources 2020, 470, 228423.

[38]

Zhang, J. X.; Wang, P. F.; Bai, P. X.; Wan, H. L.; Liu, S. F.; Hou, S.; Pu, X. J.; Xia, J. L.; Zhang, W. R.; Wang, Z. Y. et al. Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv. Mater. 2022, 34, 2108353.

[39]

Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion. 1996, 83, 167–173.

[40]

Qiu, J. L.; Liu, X. Y.; Chen, R. S.; Li, Q. H.; Wang, Y.; Chen, P. H.; Gan, L. Y.; Lee, S. J.; Nordlund, D.; Liu, Y. J. et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 2020, 30, 1909392.

[41]

Yang, Z. Z.; Li, D.; Rong, J. H.; Yan, W. D.; Niu, Z. W. Opal hydrogels derived by sulfonation of polystyrene colloidal crystals. Macromol. Mater. Eng. 2002, 287, 627–633.

DOI
File
12274_2022_5010_MOESM1_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2022
Revised: 25 August 2022
Accepted: 04 September 2022
Published: 03 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22025507 and 21931012), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-SLH020), Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-202010).

Return