Journal Home > Volume 16 , Issue 2

Grain boundaries in two-dimensional (2D) semiconductors generally induce distorted band alignment and interfacial charge, which impair their electronic properties for device applications. Here, we report the improvement of band alignment at the grain boundaries of PtSe2, a 2D semiconductor, with selective adsorption of a presentative organic acceptor, tetracyanoquinodimethane (TCNQ). TCNQ molecules show selective adsorption at the PtSe2 grain boundary with strong interfacial charge. The adsorption of TCNQ distinctly improves the band alignment at the PtSe2 grain boundaries. With the charge transfer between the grain boundary and TCNQ, the local charge is inhibited, and the band bending at the grain boundary is suppressed, as revealed by the scanning tunneling microscopy and spectroscopy (STM/S) results. Our finding provides an effective method for the advancement of the band alignment at the grain boundary by functional molecules, improving the electronic properties of 2D semiconductors for their future applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Improving the band alignment at PtSe2 grain boundaries with selective adsorption of TCNQ

Show Author's information Yanhui Hou1,§Ziqiang Xu1,§Yan Shao2Linlu Wu3Zhongliu Liu2Genyu Hu1Wei Ji3Jingsi Qiao1( )Xu Wu1( )Hong-Jun Gao2Yeliang Wang1( )
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China

§ Yanhui Hou and Ziqiang Xu contributed equally to this work.

Abstract

Grain boundaries in two-dimensional (2D) semiconductors generally induce distorted band alignment and interfacial charge, which impair their electronic properties for device applications. Here, we report the improvement of band alignment at the grain boundaries of PtSe2, a 2D semiconductor, with selective adsorption of a presentative organic acceptor, tetracyanoquinodimethane (TCNQ). TCNQ molecules show selective adsorption at the PtSe2 grain boundary with strong interfacial charge. The adsorption of TCNQ distinctly improves the band alignment at the PtSe2 grain boundaries. With the charge transfer between the grain boundary and TCNQ, the local charge is inhibited, and the band bending at the grain boundary is suppressed, as revealed by the scanning tunneling microscopy and spectroscopy (STM/S) results. Our finding provides an effective method for the advancement of the band alignment at the grain boundary by functional molecules, improving the electronic properties of 2D semiconductors for their future applications.

Keywords: grain boundary, scanning tunneling microscopy (STM), PtSe2, band alignment, organic-two-dimensional (2D) heterostructure

References(38)

[1]

Yu, Z. H.; Ong, Z. Y.; Li, S. L.; Xu, J. B.; Zhang, G.; Zhang, Y. W.; Shi, Y.; Wang, X. R. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 2017, 27, 1604093.

[2]

Cui, C. J.; Xue, F.; Hu, W. J.; Li, L. J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2018, 2, 18.

[3]

Zhang, Y.; Yao, Y. Y.; Sendeku, M. G.; Yin, L.; Zhan, X. Y.; Wang, F.; Wang, Z. X.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694.

[4]

Si, M. W.; Saha, A. K.; Gao, S. J.; Qiu, G.; Qin, J. K.; Duan, Y. Q.; Jian, J.; Niu, C.; Wang, H. Y.; Wu, W. Z. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2019, 2, 580–586.

[5]

Sung, J.; Zhou, Y.; Scuri, G.; Zólyomi, V.; Andersen, T. I.; Yoo, H.; Wild, D. S.; Joe, A. Y.; Gelly, R. J.; Heo, H. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Mater. 2020, 15, 750–754.

[6]

Andersen, T. I.; Scuri, G.; Sushko, A.; De Greve, K.; Sung, J.; Zhou, Y.; Wild, D. S.; Gelly, R. J.; Heo, H.; Bérubé, D. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 2021, 20, 480–487.

[7]
Reato, E.; Palacios, P.; Uzlu, B.; Saeed, M.; Grundmann, A.; Wang, Z. Y.; Schneider, D. S.; Wang, Z. X.; Heuken, M.; Kalisch, H. et al. Zero-bias power-detector circuits based on MoS2 field-effect transistors on wafer-scale flexible substrates. Adv. Mater., in press, https://doi.org/10.1002/adma.202108469.
[8]

Wang, Y.; Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 2022, 4, 101–112.

[9]

Yagodkin, D.; Greben, K.; Eljarrat, A.; Kovalchuk, S.; Ghorbani-Asl, M.; Jain, M.; Kretschmer, S.; Severin, N.; Rabe, J. P.; Krasheninnikov, A. V. et al. Extrinsic localized excitons in patterned 2D semiconductors. Adv. Funct. Mater. 2022, 32, 2203060.

[10]

Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

[11]

Ly, T. H.; Perello, D. J.; Zhao, J.; Deng, Q. M.; Kim, H.; Han, G. H.; Chae, S. H.; Jeong, H. Y.; Lee, Y. H. Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries. Nat. Commun. 2016, 7, 10426.

[12]

Chen, J.; Jung, G. S.; Ryu, G. H.; Chang, R. J.; Zhou, S.; Wen, Y.; Buehler, M. J.; Warner, J. H. Atomically sharp dual grain boundaries in 2D WS2 bilayers. Small 2019, 15, 1902590.

[13]

Murray, C.; van Efferen, C.; Jolie, W.; Fischer, J. A.; Hall, J.; Rosch, A.; Krasheninnikov, A. V.; Komsa, H. P.; Michely, T. Band bending and valence band quantization at line defects in MoS2. ACS Nano 2020, 14, 9176–9187.

[14]

Gong, Y. J.; Ye, G. L.; Lei, S. D.; Shi, G.; He, Y. M.; Lin, J. H.; Zhang, X.; Vajtai, R.; Pantelides, S. T.; Zhou, W. et al. Synthesis of millimeter-scale transition metal dichalcogenides single crystals. Adv. Funct. Mater. 2016, 26, 2009–2015.

[15]

Chen, S.; Gao, J. F.; Srinivasan, B. M.; Zhang, G.; Yang, M.; Chai, J. W.; Wang, S. J.; Chi, D. Z.; Zhang, Y. W. Revealing the grain boundary formation mechanism and kinetics during polycrystalline MoS2 growth. ACS Appl. Mater. Interfaces 2019, 11, 46090–46100.

[16]

Xu, X. M.; Das, G.; He, X.; Hedhili, M. N.; Di Fabrizio, E.; Zhang, X. X.; Alshareef, H. N. High-performance monolayer MoS2 films at the wafer scale by two-step growth. Adv. Funct. Mater. 2019, 29, 1901070.

[17]

Huang, Y.; Yu, K.; Li, H. Z.; Xu, K.; Liang, Z. X.; Walker, D.; Ferreira, P.; Fischer, P.; Fan, D. L. Scalable fabrication of molybdenum disulfide nanostructures and their assembly. Adv. Mater. 2020, 32, 2003439.

[18]

Zhang, W. F.; Zhang, Y.; Qiu, J. K.; Zhao, Z. H.; Liu, N. Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential. InfoMat 2021, 3, 133–154.

[19]

Yu, X. T.; Wang, X.; Zhou, F. F.; Qu, J. L.; Song, J. 2D van der Waals heterojunction nanophotonic devices: From fabrication to performance. Adv. Funct. Mater. 2021, 31, 2104260.

[20]

Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

[21]

Barja, S.; Wickenburg, S.; Liu, Z. F.; Zhang, Y.; Ryu, H.; Ugeda, M. M.; Hussain, Z.; Shen, Z. X.; Mo, S. K.; Wong, E. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 2016, 12, 751–756.

[22]

Wang, L.; Wu, Y.; Yu, Y. Y.; Chen, A. X.; Li, H. F.; Ren, W.; Lu, S.; Ding, S. A.; Yang, H.; Xue, Q. K. et al. Direct observation of one-dimensional Peierls-type charge density wave in twin boundaries of monolayer MoTe2. ACS Nano 2020, 14, 8299–8306.

[23]

Yao, W. Q.; Wu, B.; Liu, Y. Q. Growth and grain boundaries in 2D materials. ACS Nano 2020, 14, 9320–9346.

[24]

Zhang, Q. Z.; Hou, Y. H.; Zhang, T.; Xu, Z. Q.; Huang, Z. P.; Yuan, P. W.; Jia, L. G.; Yang, H. X.; Huang, Y.; Ji, W. et al. Visualizing spatial evolution of electron−correlated interface in two-dimensional heterostructures. ACS Nano 2021, 15, 16589–16596.

[25]

Liu, F. C.; Chow, W. L.; He, X. X.; Hu, P.; Zheng, S. J.; Wang, X. L.; Zhou, J. D.; Fu, Q. D.; Fu, W.; Yu, P. et al. Van der Waals p-n junction based on an organic−inorganic heterostructure. Adv. Funct. Mater. 2015, 25, 5865–5871.

[26]

Huang, Y. L.; Zheng, Y. J.; Song, Z. B.; Chi, D. Z.; Wee, A. T. S.; Quek, S. Y. The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241–3264.

[27]
SunJ.ChoiY.ChoiY. J.KimS.ParkJ. H.LeeS.ChoJ. H. 2D-organic hybrid heterostructures for optoelectronic applicationsAdv. Mater.201931180383110.1002/adma.201803831

Sun, J.; Choi, Y.; Choi, Y. J.; Kim, S.; Park, J. H.; Lee, S.; Cho, J. H. 2D-organic hybrid heterostructures for optoelectronic applications. Adv. Mater. 2019, 31, 1803831.

[28]

Ulman, K.; Quek, S. Y. Organic-2D material heterostructures: A promising platform for exciton condensation and multiplication. Nano Lett. 2021, 21, 8888–8894.

[29]

Lin, X.; Lu, J. C.; Shao, Y.; Zhang, Y. Y.; Wu, X.; Pan, J. B.; Gao, L.; Zhu, S. Y.; Qian, K.; Zhang, Y. F. et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 2017, 16, 717–721.

[30]

He, X. Y.; Zhang, L.; Chua, R.; Wong, P. K. J.; Arramel, A.; Feng, Y. P.; Wang, S. J.; Chi, D. Z.; Yang, M.; Huang, Y. L. et al. Selective self-assembly of 2, 3-diaminophenazine molecules on MoSe2 mirror twin boundaries. Nat. Commun. 2019, 10, 2847.

[31]

Park, J. H.; Sanne, A.; Guo, Y. Z.; Amani, M.; Zhang, K. H.; Movva, H. C. P.; Robinson, J. A.; Javey, A.; Robertson, J.; Banerjee, S. K. et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 2017, 3, e1701661.

[32]

Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013–4018.

[33]

Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

[34]

Yao, W.; Wang, E. Y.; Huang, H. Q.; Deng, K.; Yan, M. Z.; Zhang, K. N.; Miyamoto, K.; Okuda, T.; Li, L. F.; Wang, Y. L. et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216.

[35]

Xu, H.; Zhang, H. M.; Liu, Y. W.; Zhang, S. M.; Sun, Y. Y.; Guo, Z. X.; Sheng, Y. C.; Wang, X. D.; Luo, C.; Wu, X. et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater. 2019, 29, 1805614.

[36]

Wu, X.; Qiao, J. S.; Liu, L. W.; Shao, Y.; Liu, Z. L.; Li, L. F.; Zhu, Z. L.; Wang, C.; Hu, Z. X.; Ji, W. et al. Shallowing interfacial carrier trap in transition metal dichalcogenide heterostructures with interlayer hybridization. Nano Res. 2021, 14, 1390–1396.

[37]

Li, J. F.; Joseph, T.; Ghorbani-Asl, M.; Kolekar, S.; Krasheninnikov, A. V.; Batzill, M. Edge and point-defect induced electronic and magnetic properties in monolayer PtSe2. Adv. Funct. Mater. 2022, 32, 2110428.

[38]

Yousofnejad, A.; Reecht, G.; Krane, N.; Lotze, C.; Franke, K. J. Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: Resolution of electronic and vibronic states of TCNQ. Beilstein J. Nanotechnol. 2020, 11, 1062–1071.

File
12274_2022_5009_MOESM1_ESM.pdf (835.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 June 2022
Revised: 09 August 2022
Accepted: 03 September 2022
Published: 21 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge financial support from the National Key Research and Development Program of China (Nos. 2021YFA1400100, 2020YFA0308800, and 2019YFA0308000), the National Natural Science Foundation of China (Nos. 92163206 and 62171035), the Beijing Nova Program from Beijing Municipal Science & Technology Commission (No. Z211100002121072), and the Beijing Natural Science Foundation (Nos. Z190006 and 4192054). Calculations were performed at the Physics Lab of High-Performance Computing of Renmin University of China, and Beijing Super Cloud Computing Center.

Return