Journal Home > Volume 16 , Issue 1

Black phosphorus (BP) has attracted significant attention owing to its unique structure and preeminent photoelectric properties, which can be utilized to create novel junctions. Based on different BP-based junctions, versatile optoelectronic devices have been fabricated and investigated in recent years, providing a fertile library for the characteristics of BP-based junctions and their optoelectronic applications. This review summarizes diverse BP-based junctions and their optoelectronic device applications. We firstly introduce the structure and properties of BP. Then, we emphatically describe the formation, properties, and optoelectronic device applications of the BP-based junctions including heterojunctions of BP and other two-dimensional (2D) semiconductors, BP p–n homojunctions, and BP/metal Schottky junctions. Finally, the challenge and prospect of the development and application of BP-based junctions are discussed. This timely review gives a snapshot of recent research breakthroughs in BP-based junctions and optoelectronic devices based on them, which is expected to provide a comprehensive vision for the potential of BP in the optoelectronic field.


menu
Abstract
Full text
Outline
About this article

Black-phosphorus-based junctions and their optoelectronic device applications

Show Author's information Kunchan Wang§Zhuoyang He§Xinyue Li§Ke XuQingping ZhouXiaowo YeTeng ZhangShenghao JiangYanming ZhangBei HuChangxin Chen( )
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China

§ Kunchan Wang, Zhuoyang He, and Xinyue Li contributed equally to this work.

Abstract

Black phosphorus (BP) has attracted significant attention owing to its unique structure and preeminent photoelectric properties, which can be utilized to create novel junctions. Based on different BP-based junctions, versatile optoelectronic devices have been fabricated and investigated in recent years, providing a fertile library for the characteristics of BP-based junctions and their optoelectronic applications. This review summarizes diverse BP-based junctions and their optoelectronic device applications. We firstly introduce the structure and properties of BP. Then, we emphatically describe the formation, properties, and optoelectronic device applications of the BP-based junctions including heterojunctions of BP and other two-dimensional (2D) semiconductors, BP p–n homojunctions, and BP/metal Schottky junctions. Finally, the challenge and prospect of the development and application of BP-based junctions are discussed. This timely review gives a snapshot of recent research breakthroughs in BP-based junctions and optoelectronic devices based on them, which is expected to provide a comprehensive vision for the potential of BP in the optoelectronic field.

Keywords: heterojunction, optoelectronic device, Schottky junction, two-dimensional (2D) semiconductor, black phosphorus (BP), p–n homojunction

References(143)

[1]

Ricciardulli, A. G.; Blom, P. W. M. Solution-Processable 2D materials applied in light-emitting diodes and solar cells. Adv. Mater. Technol. 2020, 5, 1900972.

[2]

Baboukani, A. R.; Khakpour, I.; Drozd, V.; Wang, C. L. Liquid-based exfoliation of black phosphorus into phosphorene and its application for energy storage devices. Small Struct. 2021, 2, 2000148.

[3]

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

[4]

Huang, L.; Ang, K. W. Black phosphorus photonics toward on-chip applications. Appl. Phys. Rev. 2020, 7, 031302.

[5]

Castellanos-Gomez, A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett. 2015, 6, 4280–4291.

[6]

Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739.

[7]

Huang, H.; Jiang, B.; Zou, X. M.; Zhao, X. Z.; Liao, L. Black phosphorus electronics. Sci. Bull. 2019, 64, 1067–1079.

[8]

Deng, B. C.; Frisenda, R.; Li, C.; Chen, X. L.; Castellanos-Gomez, A.; Xia, F. N. Progress on black phosphorus photonics. Adv. Opt. Mater. 2018, 6, 1800365.

[9]

Tan, W. C.; Wang, L.; Feng, X. W.; Chen, L.; Huang, L.; Huang, X.; Ang, K. W. Recent advances in black phosphorus-based electronic devices. Adv. Electron. Mater. 2019, 5, 1800666.

[10]

Chen, P. F.; Li, N.; Chen, X. Z.; Ong, W. J.; Zhao, X. J. The rising star of 2D black phosphorus beyond graphene: Synthesis, properties and electronic applications. 2D Mater. 2017, 5, 014002.

[11]

Chen, T. W.; Zhao, P.; Guo, X.; Zhang, S. L. Two-fold anisotropy governs morphological evolution and stress generation in sodiated black phosphorus for Sodium ion batteries. Nano Lett. 2017, 17, 2299–2306.

[12]

Liu, K.; Fu, J. W.; Zhu, L.; Zhang, X. D.; Li, H. M.; Liu, H.; Hu, J. H.; Liu, M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 2020, 12, 4903–4908.

[13]

Meng, R. J.; Huang, J. M.; Feng, Y. T.; Zu, L. H.; Peng, C. X.; Zheng, L. R.; Zheng, L.; Chen, Z. B.; Liu, G. L.; Chen, B. J. et al. Black phosphorus quantum Dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 2018, 8, 1801514.

[14]

Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zuo, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955–3965.

[15]

Zhang, Y. P.; Wang, L. L.; Xu, H.; Cao, J. M.; Chen, D.; Han, W. 3D Chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries. Adv. Funct. Mater. 2020, 30, 1909372.

[16]

Bat-Erdene, M.; Batmunkh, M.; Tawfik, S. A.; Fronzi, M.; Ford, M. J.; Shearer, C. J.; Yu, L. P.; Dadkhah, M.; Gascooke, J. R.; Gibson, C. T. et al. Efficiency enhancement of single-walled carbon nanotube-silicon heterojunction solar cells using microwave-exfoliated few-layer black phosphorus. Adv. Funct. Mater. 2017, 27, 1704488.

[17]

Batmunkh, M.; Bat-Erdene, M.; Shapter, J. G. Black phosphorus: Synthesis and application for solar cells. Adv. Energy Mater. 2018, 8, 1701832.

[18]

Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci. Appl. 2021, 10, 123.

[19]

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.

[20]

Qiu, M.; Singh, A.; Wang, D.; Qu, J. L.; Swihart, M.; Zhang, H.; Prasad, P. N. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today 2019, 25, 135–155.

[21]

Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.

[22]

Qu, G. B.; Xia, T.; Zhou, W. H.; Zhang, X.; Zhang, H. Y.; Hu, L. G.; Shi, J. B.; Yu, X. F.; Jiang, G. B. Property−activity relationship of black phosphorus at the Nano-bio interface: From molecules to organisms. Chem. Rev. 2020, 120, 2288–2346.

[23]

Pang, J. B.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R. G.; Gemming, T.; Liu, Z. F.; Rummeli, M. H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 2018, 8, 1702093.

[24]

Zhang, Z. M.; Xin, X.; Yan, Q. F.; Li, Q.; Yang, Y.; Ren, T. L. Two-step heating synthesis of sub-3 millimeter-sized orthorhombic black phosphorus single crystal by chemical vapor transport reaction method. Sci. China Mater. 2016, 59, 122–134.

[25]

Wu, S. X.; Hui, K. S.; Hui, K. N. 2D black phosphorus: From preparation to applications for electrochemical energy storage. Adv. Sci. (Weinh. ) 2018, 5, 1700491.

[26]

Ju, W. W.; Li, T. W.; Wang, H.; Yong, Y. L.; Sun, J. F. Strain-induced semiconductor to metal transition in few-layer black phosphorus from first principles. Chem. Phys. Lett. 2015, 622, 109–114.

[27]

Jiang, J. W.; Park, H. S. Negative poisson's ratio in single-layer black phosphorus. Nat. Commun. 2014, 5, 4727.

[28]

Luo, X.; Lu, X.; Koon, G. K. W.; Castro Neto, A. H.; Özyilmaz, B.; Xiong, Q. H.; Quek, S. Y. Large frequency change with thickness in interlayer breathing mode-significant interlayer interactions in few layer black phosphorus. Nano Lett. 2015, 15, 3931–3938.

[29]

Island, J. O.; Castellanos-Gomez, A. Black phosphorus-based nanodevices. Semicond. Semimetals 2016, 95, 279–303.

[30]

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

[31]

Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

[32]

Zhu, W. N.; Liang, L. B.; Roberts, R. H.; Lin, J. F.; Akinwande, D. Anisotropic electron-phonon interactions in angle-resolved Raman study of strained black phosphorus. ACS Nano. 2018, 12, 12512–12522.

[33]

Kumar, P.; Bhadoria, B. S.; Kumar, S.; Bhowmick, S.; Chauhan, Y. S.; Agarwal, A. Thickness and electric-field-dependent polarizability and dielectric constant in phosphorene. Phys. Rev. B 2016, 93, 195428.

[34]

Mu, X.; Wang, J.; Sun, M. Two-dimensional black phosphorus: Physical properties and applications. Mater. Today Phys. 2019, 8, 92–111.

[35]

Debnath, P. C.; Park, K.; Song, Y. W. Recent advances in black-phosphorus-based photonics and optoelectronics devices. Small Methods 2018, 2, 1700315.

[36]

Kang, J.; Sangwan, V. K.; Wood, J. D.; Hersam, M. C. Solution-based processing of monodisperse two-dimensional nanomaterials. Acc. Chem. Res. 2017, 50, 943–951.

[37]

Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344–1363.

[38]

Keyes, R. W. The electrical properties of black phosphorus. Phys. Rev. 1953, 92, 580–584.

[39]

Baba, M.; Izumida, F.; Takeda, Y.; Shibata, K.; Morita, A.; Koike, Y.; Fukase, T. Two-dimensional Anderson localization in black phosphorus crystals prepared by bismuth-flux method. J. Phys. Soc. Jpn. 1991, 60, 3777–3783.

[40]

Li, L. K.; Yang, F. Y.; Ye, G. J.; Zhang, Z. C.; Zhu, Z. W.; Lou, W. K.; Zhou, X. Y.; Li, L.; Watanabe, K.; Taniguchi, T. et al. Quantum hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597.

[41]
Wang, C.; Huang, Y.; Duan, X. F. Enhanced electrical characteristics of black phosphorus by polyaniline and protonic acid surface doping. In 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), Pittsburgh, 2017, pp 453–455.
[42]

Han, F. W.; Zhao, C. X.; Zhang, Y. M. Photoelectric properties of monolayer black phosphorus in visible regime at room temperature. AIP Adv. 2019, 9, 055216.

[43]

Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

[44]

Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.

[45]

Dai, J.; Zeng, X. Structure and stability of two dimensional phosphorene with = O or = NH functionalization. RSC Adv. 2014, 4, 48017–48021.

[46]

Zhou, Q. H.; Chen, Q.; Tong, Y. L.; Wang, J. L. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew. Chem., Int. Ed. 2016, 55, 11437–11441.

[47]

Luo, X.; Rahbarihagh, Y.; Hwang, J. C. M.; Liu, H.; Du, Y. C.; Ye, P. D. Temporal and thermal stability of Al2O3-passivated phosphorene MOSFETs. IEEE Electron. Device. Lett. 2014, 35, 1314–1316.

[48]

Wan, B. S.; Yang, B. C.; Wang, Y.; Zhang, J. Y.; Zeng, Z. M.; Liu, Z. Y.; Wang, W. H. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology 2015, 26, 435702.

[49]

Illarionov, Y. Y.; Waltl, M.; Rzepa, G.; Kim, J. S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano. 2016, 10, 9543–9549.

[50]

Na, J.; Park, K.; Kim, J. T.; Choi, W. K.; Song, Y. W. Air-stable few-layer black phosphorus phototransistor for near-infrared detection. Nanotechnology 2017, 28, 085201.

[51]

Wu, D. Z.; Peng, Z. J.; Jin, C. H.; Zhang, Z. Y. Effective passivation of black phosphorus transistor against ambient degradation by an ultra-thin tin oxide film. Sci. Bull. 2019, 64, 570–574.

[52]

Son, Y.; Kozawa, D.; Liu, A. T.; Koman, V. B.; Wang, Q. H.; Strano, M. S. A study of bilayer phosphorene stability under MoS2-passivation. 2D Mater. 2017, 4, 025091.

[53]

Gamage, S.; Fali, A.; Aghamiri, N.; Yang, L.; Ye, P. D.; Abate, Y. Reliable passivation of black phosphorus by thin hybrid coating. Nanotechnology 2017, 28, 265201.

[54]

Liu, Y.; Shivananju, B. N.; Wang, Y. S.; Zhang, Y. P.; Yu, W. Z.; Xiao, S.; Sun, T.; Ma, W. L.; Mu, H. R.; Lin, S. H. et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137–36145.

[55]

Zhao, Y. T.; Wang, H. Y.; Huang, H.; Xiao, Q. L.; Xu, Y. H.; Guo, Z. N.; Xie, H. H.; Shao, J. D.; Sun, Z. B.; Han, W. J. et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem., Int. Ed. 2016, 55, 5003–5007.

[56]

Wu, L. D.; Meng, Q. Y.; Xu, Z. Y.; Cao, Q.; Xiao, Y. S.; Liu, H.; Han, G.; Wei, S. H. Passivation of black phosphorus as organic-phase enzyme platform for bisphenol a determination. Anal. Chim. Acta 2020, 1095, 197–203.

[57]

He, D. W.; Wang, Y. L.; Huang, Y.; Shi, Y.; Wang, X. R.; Duan, X. F. High-performance black phosphorus field-effect transistors with long-term air stability. Nano Lett. 2019, 19, 331–337.

[58]

Tofan, D.; Sakazaki, Y.; Walz Mitra, K. L.; Peng, R. M.; Lee, S.; Li, M.; Velian, A. Surface modification of black phosphorus with group 13 lewis acids for ambient protection and electronic tuning. Angew. Chem., Int. Ed. 2021, 60, 8329–8336.

[59]

Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, G. C.; Hersam, M. C. Covalent Functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597–602.

[60]

An, C. J.; Kang, Y. H.; Lee, C.; Cho, S. Y. Preparation of highly stable black phosphorus by gold decoration for high-performance thermoelectric generators. Adv. Funct. Mater. 2018, 28, 1800532.

[61]

Guo, Z. N.; Chen, S.; Wang, Z. Z.; Yang, Z. Y.; Liu, F.; Xu, Y. H.; Wang, J. H.; Yi, Y.; Zhang, H.; Liao, L. et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 2017, 29, 1703811.

[62]

Caporali, M.; Serrano-Ruiz, M.; Telesio, F.; Heun, S.; Nicotra, G.; Spinella, C.; Peruzzini, M. Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chem. Commun. 2017, 53, 10946–10949.

[63]

Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y. et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408–9415.

[64]

Ge, Y. Q.; Chen, S.; Xu, Y. J.; He, Z. L.; Liang, Z. M.; Chen, Y. X.; Song, Y. F.; Fan, D. Y.; Zhang, K.; Zhang, H. Few-layer selenium-doped black phosphorus: Synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C 2017, 5, 6129–6135.

[65]

Lv, W. M.; Yang, B. C.; Wang, B. C.; Wan, W. H.; Ge, Y. F.; Yang, R. L.; Hao, C. X.; Xiang, J. Y.; Zhang, B. S.; Zeng, Z. M. et al. Sulfur-doped black phosphorus field-effect transistors with enhanced stability. ACS Appl. Mater. Interfaces 2018, 10, 9663–9668.

[66]

Chen, X. L.; Wu, Y. Y.; Wu, Z. F.; Han, Y.; Xu, S. G.; Wang, L.; Ye, W. G.; Han, T. Y.; He, Y. H.; Cai, Y. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315.

[67]

Li, X. F.; Yu, Z. Q.; Xiong, X.; Li, T. Y.; Gao, T. T.; Wang, R. S.; Huang, R.; Wu, Y. Q. High-speed black phosphorus field-effect transistors approaching ballistic Limit. Sci. Adv. 2019, 5, eaau3194.

[68]

Tang, X.; Liang, W. Y.; Zhao, J. L.; Li, Z. J.; Qiu, M.; Fan, T. J.; Luo, C. S.; Zhou, Y.; Li, Y.; Guo, Z. N. et al. Fluorinated phosphorene: Electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 2017, 13, 1702739.

[69]

Thurakkal, S.; Zhang, X. Y. Recent advances in chemical functionalization of 2D black phosphorous nanosheets. Adv. Sci 2020, 7, 1902359.

[70]

Li, L. Y.; Wang, F. F.; Liu, Y.; Cao, F. L.; Zhu, B. H.; Gu, Y. Z. Local-field-dependent nonlinear optical absorption of black phosphorus nanoflakes hybridized by silver nanoparticles. J. Phys. Chem. C 2021, 125, 15448–15457.

[71]

Lei, S. Y.; Shen, H. Y.; Sun, Y. Y.; Wan, N.; Yu, H.; Zhang, S. B. Enhancing the ambient stability of few-layer black phosphorus by surface modification. RSC. Adv. 2018, 8, 14676–14683.

[72]

Zheng, Z.; Zu, X. T.; Zhang, Y.; Zhou, W. L. Rational design of Type-II Nano-heterojunctions for nanoscale optoelectronics. Mater. Today Phys. 2020, 15, 100262.

[73]

Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

[74]

Lee, G.; Pearton, S. J.; Ren, F.; Kim, J. Two-dimensionally layered p-black phosphorus/n-MoS2/p-black phosphorus heterojunctions. ACS Appl. Mater. Interfaces 2018, 10, 10347–10352.

[75]

Meingast, L.; Koleśnik-Gray, M.; Siebert, M.; Abellán, G.; Wild, S.; Lloret, V.; Mundloch, U.; Hauke, F.; Hirsch, A.; Krstić, V. Effect of TCNQ layer cover on oxidation dynamics of black phosphorus. Phys. Status Solidi Rapid Res. Lett. 2018, 12, 1800179.

[76]

Pan, C.; Mao, Z.; Yuan, X.; Zhang, H. J.; Mei, L.; Ji, X. Y. Heterojunction nanomedicine. Adv. Sci. 2022, 9, 2105747.

[77]

Liao, J. Y.; Wu, J. X.; Dang, C. H.; Xie, L. M. Methods of transferring two-dimensional materials. Acta. Phys. Sin. 2021, 70, 028201.

[78]

Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Van Der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

[79]

Jain, A.; Bharadwaj, P.; Heeg, S.; Parzefall, M.; Taniguchi, T.; Watanabe, K.; Novotny, L. Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology 2018, 29, 265203.

[80]

Chaudhary, K.; Tamagnone, M.; Rezaee, M.; Bediako, D. K.; Ambrosio, A.; Kim, P.; Capasso, F. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 2019, 5, eaau7171.

[81]

Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano. 2014, 8, 8292–8299.

[82]

Hong, T.; Chamlagain, B.; Wang, T. J.; Chuang, H. J.; Zhou, Z. X.; Xu, Y. Q. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. Nanoscale 2015, 7, 18537–18541.

[83]

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

[84]

Walmsley, T. S.; Chamlagain, B.; Rijal, U.; Wang, T. J.; Zhou, Z. X.; Xu, Y. Q. Gate-tunable photoresponse time in black phosphorus-MoS2 heterojunctions. Adv. Opt. Mater. 2019, 7, 1800832.

[85]

Dastgeer, G.; Khan, F. M.; Nazir, G.; Afzal, M. A.; Aftab, S.; Naqvi, A. B.; Cha, J.; Min, K; Jamil, Y.; Jung J.; et al. Temperature-dependent and gate-tunable rectification in a black phosphorus/WS2 van der Waals heterojunction diode. ACS Appl. Mater. Interfaces. 2018, 10, 13150–13157.

[86]

Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222.

[87]

Srivastava, P. K.; Hassan, Y.; Gebredingle, Y.; Jung, J.; Kang, B.; Yoo, W. J.; Singh, B.; Lee, C. Van der Waals broken-gap p-n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8266–8275.

[88]

Hu, L.; Yuan, J.; Ren, Y.; Wang, Y.; Yang, J. Q.; Zhou, Y.; Zeng, Y. J.; Han, S. T.; Ruan, S. C. Phosphorene/ZnO Nano-heterojunctions for broadband photonic nonvolatile memory applications. Adv. Mater. 2018, 30, 1801232.

[89]

Bi, J. H.; Zou, X. M.; Lv, Y. W.; Li, G. L.; Liu, X. Q.; Liu, Y.; Yu, T.; Yang, Z. Y.; Liao, L. InGaZnO tunnel and junction transistors based on vertically stacked black phosphorus/InGaZnO heterojunctions. Adv. Electron. Mater. 2020, 6, 2000291.

[90]

Na, J.; Kim, Y.; Smet, J. H.; Burghard, M.; Kern, K. Gate-tunable tunneling transistor based on a thin black phosphorus-SnSe2 heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 20973–20978.

[91]

Xiong, X.; Huang, M. Q.; Hu, B.; Li, X. F.; Liu, F.; Li, S. C.; Tian, M. C.; Li, T. Y.; Song, J.; Wu, Y. Q. A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nat. Electron. 2020, 3, 106–112.

[92]

Huber, M. A.; Mooshammer, F.; Plankl, M.; Viti, L.; Sandner, F.; Kastner, L. Z.; Frank, T.; Fabian, J.; Vitiello, M. S.; Cocker, T. L. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 2017, 12, 207–211.

[93]

Jiang, X. X.; Zhang, M.; Liu, L. W.; Shi, X. Y.; Yang, Y. F.; Zhang, K.; Zhu, H.; Chen, L.; Liu, X. K.; Sun, Q. Q. et al. Multifunctional black phosphorus/MoS2 van der Waals heterojunction. Nanophotonics 2020, 9, 2487–2493.

[94]

Li, D.; Zhu, C. G.; Liu, H. W.; Sun, X. X.; Zheng, B. Y.; Liu, Y.; Liu, Y.; Wang, X. W.; Zhu, X. L.; Wang, X. et al. Light-triggered two-dimensional lateral homogeneous p-n diodes for opto-electrical interconnection circuits. Sci. Bull. 2020, 65, 293–299.

[95]

Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

[96]

Zhang, S. M.; Deng, X. N.; Wu, Y. F.; Wang, Y. Q.; Ke, S. X.; Zhang, S. S.; Liu, K.; Lv, R. T.; Li, Z. C.; Xiong, Q. H. et al. Lateral layered semiconductor multijunctions for novel electronic devices. Chem. Soc. Rev. 2022, 51, 4000–4022.

[97]

Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu Adatoms. Nano Lett. 2016, 16, 2145–2151.

[98]

Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.

[99]

Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122–4129.

[100]

Kim, D. K.; Hong, S. B.; Jeong, K.; Lee, C.; Kim, H.; Cho, M. H. P-N junction diode using Plasma boron-doped black phosphorus for high-performance photovoltaic devices. ACS Nano 2019, 13, 1683–1693.

[101]

Xu, Y. J.; Liu, C. L.; Guo, C.; Yu, Q.; Guo, W. L.; Lu, W.; Chen, X. S.; Wang, L.; Zhang, K. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy 2020, 70, 104518.

[102]

Srivastava, P. K.; Hassan, Y.; De Sousa, D. J. P.; Gebredingle, Y.; Joe, M.; Ali, F.; Zheng, Y.; Yoo, W. J.; Ghosh, S.; Teherani, J. T. et al. Resonant tunnelling diodes based on twisted black phosphorus homostructures. Nat. Electron. 2021, 4, 269–276.

[103]

Jia, J. Y.; Jeon, S.; Jeon, J.; Park, J. H.; Lee, S. Versatile doping control of black phosphorus and functional junction structures. J. Phys. Chem. C 2019, 123, 10682–10688.

[104]

Chang, H. M.; Fan, K. L.; Charnas, A.; Ye, P. D.; Lin, Y. M.; Wu, C. I.; Wu, C. H. Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors. J. Phys. D Appl. Phys. 2018, 51, 135306.

[105]

Gong, F.; Wu, F.; Long, M. S.; Chen, F. S.; Su, M.; Yang, Z. Y.; Shi, J. Black phosphorus infrared photodetectors with fast response and high photoresponsivity. Phys. Status Solidi Rapid Res. Lett. 2018, 12, 1800310.

[106]

Yang, L. M.; Charnas, A.; Qiu, G.; Lin, Y. M.; Lu, C. C.; Tsai, W.; Paduano, Q.; Snure, M.; Ye, P. D. How important is the metalsemiconductor contact for Schottky barrier transistors: A case study on few-layer black phosphorus? ACS Omega 2017, 2, 4173–4179.

[107]

Li, D.; Chen, M. Y.; Zong, Q. J.; Zhang, Z. X. Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers. Nano Lett. 2017, 17, 6353–6359.

[108]

Bian, B. A.; Yang, J. J.; Wei, J. L. Width dependent rectifying behavior in Schottky heterojunction based on black phosphorene. Mater. Chem. Phys. 2020, 239, 122048.

[109]

Li, X. F.; Grassi, R.; Li, S. C.; Li, T. Y.; Xiong, X.; Low, T.; Wu, Y. Q. Anomalous temperature dependence in metal-black phosphorus contact. Nano Lett. 2018, 18, 26–31.

[110]

Gao, T. T.; Li, X. F.; Xiong, X.; Huang, M. Q.; Li, T. Y.; Wu, Y. Q. Optimized transport properties in Lithium doped black phosphorus transistors. IEEE Electron. Device Lett. 2018, 39, 769–772.

[111]

Jeon, S.; Jia, J. Y.; Ju, J. H.; Lee, S. Black phosphorus photodetector integrated with Au nanoparticles. Appl. Phys. Lett. 2019, 115, 183102.

[112]

Wu, J. B.; Wang, N.; Yan, X. D.; Wang, H. Emerging low-dimensional materials for mid-infrared detection. Nano Res. 2021, 14, 1863–1877.

[113]

Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

[114]

Xie, Y.; Wu, E. X.; Zhang, J.; Hu, X. D.; Zhang, D. H.; Liu, J. Gate-tunable photodetection/voltaic device based on BP/MoTe2 heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 14215–14221.

[115]

Cao, R.; Wang, H. D.; Guo, Z. N.; Sang, D. K.; Zhang, L. Y.; Xiao, Q. L.; Zhang, Y. P.; Fan, D. Y.; Li, J. Q.; Zhang, H. Black phosphorous/Indium Selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 2019, 7, 1900020.

[116]

Zubair, M.; Zhu, C. G.; Sun, X. X.; Liu, H. W.; Zheng, B. Y.; Yi, J. L.; Zhu, X. L.; Li, D.; Pan, A. L. Record high photoresponse observed in CdS-black phosphorous van der Waals heterojunction photodiode. Sci. China Mater. 2020, 63, 1570–1578.

[117]

Zhang, X.; Yan, C.; Hu, X.; Dong, Q.; Liu, Z.; Lv, W.; Zeng, C.; Su, R.; Wang, Y.; Sun, T. High performance mid-wave infrared photodetector based on graphene/black phosphorus heterojunction. Mater. Res. Express 2021, 8, 035602.

[118]

Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 2016, 12, 5000–5007.

[119]

Shim, J.; Oh, S.; Kang, D. H.; Jo, S.; Ali, H M.; Choi, W.; Heo, K.; Jeon, J.; Lee, S.; Kim, M. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat Commun. 2016, 7, 13413.

[120]

Ye, L.; Wang, P.; Luo, W.; Gong, F.; Liao, L.; Liu, T.; Tong, L.; Zang, J.; Xu, J. et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60.

[121]

Li, J. L.; Zhang, S. D.; Wang, Y. P.; Duan, H. M.; Long, M. Q. First-principles study of strain modulation in S3P2/black phosphorene vdW heterostructured nanosheets for flexible electronics. ACS Appl. Nano Mater. 2020, 3, 4407–4417.

[122]

Farbod, M.; Taheri, R.; Kosarian, A. High performance photoresponsivity and high frequency of phosphorene/metal heterojunction as Schottky photodiode rectifier. Appl. Mater. 2021, 24, 101092.

[123]

Ngamwongwan, L.; Moontragoon, P.; Jarernboon, W.; Mondal, C.; Pathak, B.; Kaewmaraya, T. Novel BCN-phosphorene bilayer: Dependence of carbon doping on band offsets for potential photovoltaic applications. Appl. Surf. Sci. 2020, 504, 144327.

[124]

Kwak, D. H.; Ra, H. S.; Jeong, M. H.; Lee, A. Y.; Lee, J. S. High-performance photovoltaic effect with electrically balanced charge carriers in black phosphorus and WS2 heterojunction. Adv. Mater. Interfaces 2018, 5, 1800671.

[125]

Hu, S. Q.; Xu, J. P.; Zhao, Q. H.; Luo, X. G.; Zhang, X. T.; Wang, T.; Jie, W. Q.; Cheng, Y. C.; Frisenda, R.; Castellanos-Gomez, A. et al. Gate-switchable photovoltaic effect in BP/MoTe2 van der Waals heterojunctions for self-driven logic optoelectronics. Adv. Opt. Mater. 2021, 9, 2001802.

[126]

Shih, C. C.; Huang, M. H.; Wan, C. K.; Jian, W. B.; Kono, K.; Lin, Y. F.; Ho, C. H. Tuning interface barrier in 2D BP/ReSe2 heterojunctions in control of optoelectronic performances and energy conversion efficiencies. ACS Photonics, 2020, 7, 2886–2895.

[127]

Wang, L.; Huang, L.; Tan, W. C.; Feng, X. W.; Chen, L.; Ang, K. W. Pronounced photovoltaic effect in electrically tunable lateral black-phosphorus heterojunction diode. Adv. Electron. Mater. 2018, 4, 1700442.

[128]

Wang, J. J.; Rousseau, A.; Yang, M.; Low, T.; Francoeur, S.; Kéna-Cohen, S. Mid-infrared polarized emission from black phosphorus light-emitting diodes. Nano. Lett. 2020, 20, 3651–3655.

[129]

Zong, X. R.; Hu, H. M.; Ouyang, G.; Wang, J. W.; Shi, R.; Zhang, L.; Zeng, Q. S.; Zhu, C.; Chen, S. H.; Cheng, C. et al. Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light Sci. Appl. 2020, 9, 114.

[130]

Chang, T. Y.; Chen, Y. Y.; Luo, D. I.; Li, J. X.; Chen, P. L.; Lee, S.; Fang, Z. R.; Li, W. Q.; Zhang, Y. Y.; Li, M. et al. Black phosphorus mid-infrared light-emitting diodes integrated with Silicon photonic waveguides. Nano. Lett. 2020, 20, 6824–6830.

[131]

Gupta, N.; Kim, H.; Azar, N. S.; Uddin, S. Z.; Lien, D. H.; Crozier, K. B.; Javey, A. Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus. Nano Lett. 2022, 22, 1294–1301.

[132]

Ricciardulli, A. G.; Yang, S.; Kotadiya, N. B.; Wetzelaer, G. J. A. H.; Feng, X. L.; Blom, P. W. M. Improved hole injection into Perovskite light-emitting diodes using a black phosphorus interlayer. Adv. Electron. Mater. 2019, 5, 1800687.

[133]

Chen, C.; Lu, X. B.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Li, C.; Ma, C.; Yuan, S. F.; Sung, E.; Watanabe, K. et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv. 2020, 6, eaay6134.

[134]

Li, X. S.; Deng, B. C.; Wang, X. M.; Chen, S. Z.; Vaisman, M.; Karato, S. I.; Pan, G.; Larry Lee, M.; Cha, J.; Wang, H. et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2015, 2, 031002.

[135]

Xu, Y. J.; Shi, X. Y.; Zhang, Y. S.; Zhang, H. T.; Zhang, Q. L.; Huang, Z. L.; Xu, X. F.; Guo, J.; Zhang, H.; Sun, L. T. et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 2020, 11, 1330.

[136]

Hu, G. H.; Albrow-Owen, T.; Jin, X. X.; Ali, A.; Hu, Y. W.; Howe, R. C. T.; Shehzad, K.; Yang, Z. Y.; Zhu, X. K.; Woodward, R. I. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2017, 8, 278.

[137]

Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 2015, 9, 3596–3604.

[138]

Kang, J.; Wells, S. A.; Wood, J. D.; Lee, J. H.; Liu, X. L.; Ryder, C. R.; Zhu, J.; Guest, J. R.; Husko, C. A.; Hersam, M. C. Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA 2016, 113, 11688–11693.

[139]

Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892.

[140]

Liu, Z. F.; Sun, Y. L.; Cao, H. Q.; Xie, D.; Li, W.; Wang, J. O.; Cheetham, A. K. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 2020, 11, 3917.

[141]

Bian, S.; Wen, M.; Wang, J. H.; Yang, N.; Chu, P. K.; Yu, X. F. Edge-rich black phosphorus for photocatalytic Nitrogen fixation. J. Phys. Chem. Lett. 2020, 11, 1052–1058.

[142]

Zou, B.; Qiu, S. L.; Ren, X. Y.; Zhou, Y. F.; Zhou, F.; Xu, Z. M.; Zhao, Z. X.; Song, L.; Hu, Y.; Gong, X. L. Combination of black phosphorus nanosheets and MCNTs via phosphorus-carbon bonds for reducing the flammability of air stable epoxy resin nanocomposites. J. Hazard. Mater. 2020, 383, 121069.

[143]

Zhao, L.; Chao, X.; Xu, N.; Ling, G. X.; Zhang, P. Strategies and applications for improving the stability of black phosphorus in physical environment. Adv. Eng. Mater. 2021, 23, 2100450.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 May 2022
Revised: 29 August 2022
Accepted: 04 September 2022
Published: 15 November 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China for Excellent Young Scholars (No. 61622404), the National Natural Science Foundation of China (No. 62074098), Chang Jiang (Cheung Kong) Scholars Program of Ministry of Education of China (No. Q2017081). The authors are also grateful to Dr. Xiaoming Yang and Dr. Lijuan Zhang at Zhejiang Fulai New Materials Co., Ltd. and Zhejiang Fulai New Materials Co., Ltd. for their support. The authors thank the Center for Advanced Electronic Materials and Devices (AEMD) at Shanghai Jiao Tong University for the discussion and support on device processes.

Return