Journal Home > Volume 16 , Issue 2

Recently, the discovery of a variety of moiré-related properties in the twisted vertical stacking of two different monolayers has attracted considerable attention. The introduction of small twist angles in transition metal dichalcogenide (TMD) heterostructures leads to the emergence of moiré potentials, which provide a fascinating platform for the study of strong interactions of electrons. While there has been extensive research on moiré excitons in twisted bilayer superlattices, the capture and study of moiré excitons in homostructure superlattices with layer-coupling effects remain elusive. Here, we present the observation of moiré excitons in the twisted 1L-WSe2/1L-WSe2 and 1L-WSe2/2L-WSe2 homostructures with various layer-coupling interactions. The results reveal that the moiré potential increases (~ 260%) as the number of underlying layers decreases, indicating the effect of layer coupling on the modulation of the moiré potential. The effects of the temperature and laser power dependence as well as valley polarization on moiré excitons were further demonstrated, and the crucial spectral features observed were explained. Our findings pave the way for exploring quantum phenomena and related applications of quantum information.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effect of layered-coupling in twisted WSe2 moiré superlattices

Show Author's information Biao Wu1,2Haihong Zheng1,2Shaofei Li1Chang-Tian Wang3,4Junnan Ding1Jun He1Zongwen Liu5,6Jian-Tao Wang3,4,7( )Yanping Liu1,2,8( )
School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha 410083, China
State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha 410083, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
Songshan Lake Materials Laboratory, Dongguan 523808, China
Shenzhen Research Institute of Central South University, Shenzhen 518000, China

Abstract

Recently, the discovery of a variety of moiré-related properties in the twisted vertical stacking of two different monolayers has attracted considerable attention. The introduction of small twist angles in transition metal dichalcogenide (TMD) heterostructures leads to the emergence of moiré potentials, which provide a fascinating platform for the study of strong interactions of electrons. While there has been extensive research on moiré excitons in twisted bilayer superlattices, the capture and study of moiré excitons in homostructure superlattices with layer-coupling effects remain elusive. Here, we present the observation of moiré excitons in the twisted 1L-WSe2/1L-WSe2 and 1L-WSe2/2L-WSe2 homostructures with various layer-coupling interactions. The results reveal that the moiré potential increases (~ 260%) as the number of underlying layers decreases, indicating the effect of layer coupling on the modulation of the moiré potential. The effects of the temperature and laser power dependence as well as valley polarization on moiré excitons were further demonstrated, and the crucial spectral features observed were explained. Our findings pave the way for exploring quantum phenomena and related applications of quantum information.

Keywords: moiré superlattices, moiré potential, twisted homostructures, layer-coupling

References(51)

[1]

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

[2]

Wang, L.; Shih, E. M.; Ghiotto, A.; Xian, L. D.; Rhodes, D. A.; Tan, C.; Claassen, M.; Kennes, D. M.; Bai, Y. S.; Kim, B. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 2020, 19, 861–866.

[3]

Nuckolls, K. P.; Oh, M.; Wong, D.; Lian, B.; Watanabe, K.; Taniguchi, T.; Bernevig, B. A.; Yazdani, A. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 2020, 588, 610–615.

[4]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[5]

Lu, X. B.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M. A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G. Y. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 2019, 574, 653–657.

[6]

Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

[7]

Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.

[8]

Li, S. F.; Zheng, H. H.; Ding, J. N.; Wu, B.; He, J.; Liu, Z. W.; Liu, Y. P. Dynamic control of moiré potential in twisted WS2-WSe2 heterostructures. Nano Res. 2022, 15, 7688–7694.

[9]

Wang, X.; Xiao, C. X.; Park, H.; Zhu, J. Y.; Wang, C.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Xiao, D.; Gamelin, D. R. et al. Light-induced ferromagnetism in moiré superlattices. Nature 2022, 604, 468–473.

[10]

Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; Zeng, Y. J.; Liu, Z. W.; Liu, Y. P. Observation of moiré excitons in the twisted WS2/WS2 homostructure. Nanoscale 2022, 14, 12447–12454.

[11]

Chen, Y. Z.; Cao, B. C.; Sun, C.; Wang, Z. D.; Zhou, H. Z.; Wang, L. J.; Zhu, H. M. Controlling exciton-exciton annihilation in WSe2 bilayers via interlayer twist. Nano Res. 2022, 15, 4661–4667.

[12]

Wu, F. C.; Lovorn, T.; MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.

[13]

Wu, L. S.; Cong, C. X.; Shang, J. Z.; Yang, W. H.; Chen, Y.; Zhou, J. D.; Ai, W.; Wang, Y. L.; Feng, S.; Zhang, H. B. et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res. 2021, 14, 2215–2223.

[14]

Liu, Y. P.; Zeng, C.; Yu, J.; Zhong, J. H.; Li, B.; Zhang, Z. W.; Liu, Z. W.; Wang, Z. M.; Pan, A. L.; Duan, X. D. Moiré superlattices and related moire excitons in twisted van der Waals heterostructures. Chem. Soc. Rev. 2021, 50, 6401–6422.

[15]

Tilak, N.; Lai, X. Y.; Wu, S.; Zhang, Z. Y.; Xu, M. Y.; De Almeida Ribeiro, R.; Canfield, P. C.; Andrei, E. Y. Flat band carrier confinement in magic-angle twisted bilayer graphene. Nat. Commun. 2021, 12, 4180.

[16]

Naik, M. H.; Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2018, 121, 266401.

[17]

Naik, M. H.; Kundu, S.; Maity, I.; Jain, M. Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots. Phys. Rev. B 2020, 102, 075413.

[18]

Li, H. Y.; Li, S. W.; Naik, M. H.; Xie, J. X.; Li, X. Y.; Wang, J. Y.; Regan, E.; Wang, D. Q.; Zhao, W. Y.; Zhao, S. H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 2021, 20, 945–950.

[19]

Liu, X. M.; Chiu, C. L.; Lee, J. Y.; Farahi, G.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; Yazdani, A. Spectroscopy of a tunable moiré system with a correlated and topological flat band. Nat. Commun. 2021, 12, 2732.

[20]

Marcellina, E.; Liu, X.; Hu, Z. H.; Fieramosca, A.; Huang, Y. Q.; Du, W.; Liu, S.; Zhao, J. X.; Watanabe, K.; Taniguchi, T. et al. Evidence for moire trions in twisted MoSe2 homobilayers. Nano Lett. 2021, 21, 4461–4468.

[21]

Lin, K. Q.; Junior, P. E. F.; Bauer, J. M.; Peng, B.; Monserrat, B.; Gmitra, M.; Fabian, J.; Bange, S.; Lupton, J. M. Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat. Commun. 2021, 12, 1553.

[22]

Zhang, L.; Zhang, Z.; Wu, F. C.; Wang, D. Q.; Gogna, R.; Hou, S. C.; Watanabe, K.; Taniguchi, T.; Kulkarni, K.; Kuo, T. et al. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 2020, 11, 5888.

[23]

Jin, C. H.; Regan, E. C.; Yan, A. M.; Utama, M. I. B.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

[24]

Liu, E. F.; Barré, E.; Van Baren, J.; Wilson, M.; Taniguchi, T.; Watanabe, K.; Cui, Y. T.; Gabor, N. M.; Heinz, T. F.; Chang, Y. C. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 2021, 594, 46–50.

[25]

Shinokita, K.; Miyauchi, Y.; Watanabe, K.; Taniguchi, T.; Matsuda, K. Resonant coupling of a moiré exciton to a phonon in a WSe2/MoSe2 heterobilayer. Nano Lett. 2021, 21, 5938–5944.

[26]

Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

[27]

Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

[28]

Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

[29]

Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.

[30]

Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Zeng, Y. J.; Chen, K. Q.; Liu, Z. W.; Chen, S. L.; Pan, A. L. et al. Evidence for moire intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light:Sci. Appl. 2022, 11, 166.

[31]

Li, C. C.; Gong, M.; Chen, X. D.; Li, S.; Zhao, B. W.; Dong, Y.; Guo, G. C.; Sun, F. W. Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation. Diamond Relat. Mater. 2017, 74, 119–124.

[32]

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

[33]

Wu, B.; Zheng, H. B.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Liu, Y. P. Enhanced interlayer neutral excitons and trions in MoSe2/MoS2/MoSe2 trilayer heterostructure. Nano Res. 2022, 15, 5640–5645.

[34]

Liu, E. F.; Van Baren, J.; Lu, Z. G.; Altaiary, M. M.; Taniguchi, T.; Watanabe, K.; Smirnov, D.; Lui, C. H. Gate tunable dark trions in monolayer WSe2. Phys. Rev. Lett. 2019, 123, 027401.

[35]

Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.

[36]

Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.

[37]

Zhu, S. X.; Li, D.; Hu, Y. B.; Wang, J. L.; Wang, X. J.; Lu, W. Enhancement of direct and indirect exciton emissions in few-layer WSe2 at high temperatures. Mater. Res. Express 2018, 5, 066209.

[38]

Li, Z. D.; Lu, X. B.; Leon, D. F. C.; Lyu, Z. Y.; Xie, H. C.; Hou, J. Z.; Lu, Y. Z.; Guo, X. Y.; Kaczmarek, A.; Taniguchi, T. et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 2021, 15, 1539–1547.

[39]

Guo, H. L.; Zhang, X.; Lu, G. Shedding light on moiré excitons: A first-principles perspective. Sci. Adv. 2020, 6, eabc5638.

[40]

Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

[41]

Tan, Q. H.; Rasmita, A.; Li, S.; Liu, S.; Huang, Z. M.; Xiong, Q. H.; Yang, S. A.; Novoselov, K. S.; Gao, W. B. Layer-engineered interlayer excitons. Sci. Adv. 2021, 7, eabh0863.

[42]

Yu, H. Y.; Wang, Y.; Tong, Q. J.; Xu, X. D.; Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 2015, 115, 187002.

[43]

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

[44]

Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.

[45]

Rasmita, A.; Gao, W. B. Opto-valleytronics in the 2D van der Waals heterostructure. Nano Res. 2021, 14, 1901–1911.

[46]

Zhang, W. F.; Hao, H.; Lee, Y.; Zhao, Y.; Tong, L. M.; Kim, K.; Liu, N. One-interlayer-twisted multilayer MoS2 moiré superlattices. Adv. Funct. Mater. 2022, 32, 2111529.

[47]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[48]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[49]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[50]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[51]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

File
12274_2022_5007_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 July 2022
Revised: 27 August 2022
Accepted: 31 August 2022
Published: 07 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (No. 61775241), Hunan province key research and development project (No. 2019GK2233), Hunan Provincial Science Fund for Distinguished Young Scholars (No. 2020JJ2059), the Youth Innovation Team (No. 2019012) of CSU, the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20190806144418859), the National Natural Science Foundation of China (Nos. 62090035 and U19A2090), and the Key Program of Science and Technology Department of Hunan Province (Nos. 2019XK2001 and 2020XK2001). The authors are also thankful for the support of the High-Performance Complex Manufacturing Key State Lab Project, Central South University (No. ZZYJKT2020-12). Z. W. L. thanks the support from the Australian Research Council (ARC Discovery Project, No. DP180102976). J.-T. W. acknowledge the support from the National Natural Science Foundation of China (No. 11974387), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB33000000), and the National Key Research and Development Program of China (No. 2020YFA0711502). The authors acknowledge the Beijing Super Cloud Computing Center (BSCC, www.blsc.cn) for providing HPC resources that have contributed to the research results reported within this paper. Also, we are grateful for resources from the High-Performance Computing Center of Central South University.

Return