Journal Home > Volume 16 , Issue 2

A bioresponsive polymeric nanocarrier for drug delivery is able to alter its physical and physicochemical properties in response to a variety of biological signals and pathological changes, and can exert its therapeutic efficacy within a confined space. These nanosystems can optimize the biodistribution and subcellular location of therapeutics by exploiting the differences in biochemical properties between tumors and normal tissues. Moreover, bioresponsive polymer-based nanosystems could be rationally designed as precision therapeutic platforms by optimizing the combination of responsive elements and therapeutic components according to the patient-specific disease type and stage. In this review, recent advances in smart bioresponsive polymeric nanosystems for cancer chemotherapy and immunotherapy will be summarized. We mainly discuss three categories, including acidity-sensitive, redox-responsive, and enzyme-triggered polymeric nanosystems. The important issues regarding clinical translation such as reproducibility, manufacture, and probable toxicity, are also commented.


menu
Abstract
Full text
Outline
About this article

Recent advances of bioresponsive polymeric nanomedicine for cancer therapy

Show Author's information Tu Hong1,§Xinyuan Shen2,§Madiha Zahra Syeda1,§Yang Zhang2Haonan Sheng2Yipeng Zhou3JinMing Xu4Chaojie Zhu2,6Hongjun Li2,5,6( )Zhen Gu2,5,7,8,9( )Longguang Tang1( )
International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
Jinhua Institute of Zhejiang University, Jinhua 321299, China
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

§ Tu Hong, Xinyuan Shen, and Madiha Zahra Syeda contributed equally to this work.

Abstract

A bioresponsive polymeric nanocarrier for drug delivery is able to alter its physical and physicochemical properties in response to a variety of biological signals and pathological changes, and can exert its therapeutic efficacy within a confined space. These nanosystems can optimize the biodistribution and subcellular location of therapeutics by exploiting the differences in biochemical properties between tumors and normal tissues. Moreover, bioresponsive polymer-based nanosystems could be rationally designed as precision therapeutic platforms by optimizing the combination of responsive elements and therapeutic components according to the patient-specific disease type and stage. In this review, recent advances in smart bioresponsive polymeric nanosystems for cancer chemotherapy and immunotherapy will be summarized. We mainly discuss three categories, including acidity-sensitive, redox-responsive, and enzyme-triggered polymeric nanosystems. The important issues regarding clinical translation such as reproducibility, manufacture, and probable toxicity, are also commented.

Keywords: immunotherapy, drug delivery, polymer, cancer therapy, bioresponsive

References(120)

[1]

DeBerardinis, R. J.; Lum, J. J.; Hatzivassiliou, G.; Thompson, C. B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7, 11–20.

[2]

Ganesh, K.; Massague, J. Targeting metastatic cancer. Nat. Med. 2021, 27, 34–44.

[3]

Janiszewska, M. The microcosmos of intratumor heterogeneity: The space-time of cancer evolution. Oncogene 2020, 39, 2031–2039.

[4]

Marusyk, A.; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta Rev. Cancer 2010, 1805, 105–117.

[5]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33.

[6]

Li, C.; Wang, J. C.; Wang, Y. G.; Gao, H. L.; Wei, G.; Huang, Y. Z.; Yu, H. J.; Gan, Y.; Wang, Y. J.; Mei, L. et al. Recent progress in drug delivery. Acta Pharm. Sin. B 2019, 9, 1145–1162.

[7]

Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. A. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.

[8]

Lin, A.; Giuliano, C. J.; Palladino, A.; John, K. M.; Abramowicz, C.; Yuan, M. L.; Sausville, E. L.; Lukow, D. A.; Liu, L. W.; Chait, A. R. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 2019, 11, eaaw8412.

[9]

Longley, D. B.; Johnston, P. G. Molecular mechanisms of drug resistance. J. Pathol. 2005, 205, 275–292.

[10]

O'Sullivan, D.; Sanin, D. E.; Pearce, E. J.; Pearce, E. L. Metabolic interventions in the immune response to cancer. Nat. Rev. Immunol. 2019, 19, 324–335.

[11]

Van Der Jeught, K.; Xu, H. C.; Li, Y. J.; Lu, X. B.; Ji, G. Drug resistance and new therapies in colorectal cancer. World J. Gastroenterol. 2018, 24, 3834–3848.

[12]

Liang, J. J.; Wang, H. F.; Ding, W. X.; Huang, J. X.; Zhou, X. F.; Wang, H. Y.; Dong, X.; Li, G. Y.; Chen, E. G.; Zhou, F. et al. Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity. Sci. Adv. 2020, 6, eabc3646.

[13]

Navya, P. N.; Kaphle, A.; Srinivas, S. P.; Bhargava, S. K.; Rotello, V. M.; Daima, H. K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019, 6, 23.

[14]

Sengupta, S.; Sasisekharan, R. Exploiting nanotechnology to target cancer. Br. J. Cancer 2007, 96, 1315–1319.

[15]

Misra, R.; Acharya, S.; Sahoo, S. K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov. Today 2010, 15, 842–850.

[16]

Zhang, Y.; Li, M. Y.; Gao, X. M.; Chen, Y. H.; Liu, T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol. 2019, 12, 137.

[17]

Zhu, C. J.; Ji, Z. H.; Ma, J. K.; Ding, Z. J.; Shen, J.; Wang, Q. W. Recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems for cancer treatment. Pharmaceutics 2021, 13, 940.

[18]

Zhu, C. J.; Ma, J.; Ji, Z.; Shen, J.; Wang, Q. Recent advances of cell membrane coated nanoparticles in treating cardiovascular disorders. Molecules 2021, 26, 3428.

[19]
Wang, Z. Q.; Cui, K.; Costabel, U.; Zhang, X. J. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. Exploration, in press,https://doi.org/10.1002/EXP.20210082.
DOI
[20]

An, X. N.; Zhu, A. J.; Luo, H. H.; Ke, H. T.; Chen, H. B.; Zhao, Y. L. Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. ACS Nano 2016, 10, 5947–5958.

[21]

Rao, N. V.; Ko, H.; Lee, J.; Park, J. H. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front. Bioeng. Biotechnol. 2018, 6, 110.

[22]

Syeda, M. Z.; Hong, T.; Zhang, M.; Han, Y. F.; Zhu, X. L.; Ying, S. M.; Tang, L. G. A prodrug nanoplatform via esterification of STING agonist and IDO inhibitor for synergistic cancer immunotherapy. Nano Res. 2022, 10, 9215–9222.

[23]

Crucho, C. I. C. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2015, 10, 24–38.

[24]

Kaur, S.; Prasad, C.; Balakrishnan, B.; Banerjee, R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater. Sci. 2015, 3, 955–987.

[25]

Wagner, A. M.; Spencer, D. S.; Peppas, N. A. Advanced architectures in the design of responsive polymers for cancer nanomedicine. J. Appl. Polym. Sci. 2018, 135, 46154.

[26]

Zhao, Y.; Zhang, Z. Z.; Pan, Z.; Liu, Y. Advanced bioactive nanomaterials for biomedical applications. Exploration 2021, 1, 20210089.

[27]

Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012, 64, 866–884.

[28]

Ge, Z. S.; Liu, S. Y. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325.

[29]

Yu, B.; Song, N.; Hu, H.; Chen, G. H.; Shen, Y. Q.; Cong, H. L. A degradable triple temperature-, pH-, and redox-responsive drug system for cancer chemotherapy. J. Biomed. Mater. Res. A 2018, 106, 3203–3210.

[30]

Zheng, X. L.; Pan, D. Y.; Zhu, G. N.; Zhang, L.; Bhamra, A.; Chen, R. J.; Zhang, H.; Gong, Q. Y.; Gu, Z. W.; Luo, K. A dendritic polymer-based nanosystem mediates drug penetration and irreversible endoplasmic reticulum stresses in tumor via neighboring effect. Adv. Mater. 2022, 34, 2201200.

[31]

Engin, K.; Leeper, D. B.; Cater, J. R.; Thistlethwaite, A. J.; Tupchong, L.; McFarlane, J. D. Extracellular pH distribution in human tumours. Int. J. Hyperthermia 1995, 11, 211–216.

[32]
Volk, T.; Jähde, E.; Fortmeyer, H. P.; Glüsenkamp, K. H.; Rajewsky, M. F. pH in human tumour xenografts: Effect of intravenous administration of glucose. Br. J. Cancer 1993, 68, 492–500.
DOI
[33]

Zhang, X. M.; Lin, Y. X.; Gillies, R. J. Tumor pH and its measurement. J. Nucl. Med. 2010, 51, 1167–1170.

[34]

Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020, 157, 142–160.

[35]

Tan, R. Y. H.; Lee, C. S.; Pichika, M. R.; Cheng, S. F.; Lam, K. Y. PH responsive polyurethane for the advancement of biomedical and drug delivery. Polymers (Basel) 2022, 14, 1672.

[36]

Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Tang, S.; Zhang, P. C.; Chen, Y.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 2016, 26, 1243–1252.

[37]

Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9, 1909–1915.

[38]

Wang, J. Q.; Mao, W. W.; Lock, L. L.; Tang, J. B.; Sui, M.; Sun, W. L.; Cui, H. G.; Xu, D.; Shen, Y. Q. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 2015, 9, 7195–7206.

[39]

Waite, C. L.; Roth, C. M. Nanoscale Drug Delivery Systems for Enhanced Drug Penetration into Solid Tumors: Current Progress and Opportunities. Crit. Rev. Biomed. Eng. 2012, 40, 21–41.

[40]

Jain, R. K.; Stylianopoulos, T. Delivering Nanomedicine to Solid Tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

[41]

Huang, K. Y.; Ma, H. L.; Liu, J.; Huo, S. D.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S. B.; Gan, Y. L.; Wang, P. C. et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012, 6, 4483–4493.

[42]

Dreher, M. R.; Liu, W. G.; Michelich, C. R.; Dewhirst, M. W.; Yuan, F.; Chilkoti, A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 2006, 98, 335–344.

[43]

Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Itty Ipe, B.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170.

[44]

Li, H. J.; Du, J. Z.; Liu, J.; Du, X. J.; Shen, S.; Zhu, Y. H.; Wang, X. Y.; Ye, X. D.; Nie, S. M.; Wang, J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano 2016, 10, 6753–6761.

[45]

Boedtkjer, E.; Pedersen, S. F. The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol. 2020, 82, 103–126.

[46]

Liu, M. D.; Huang, L. Q.; Zhang, W. N.; Wang, X. C.; Geng, Y. Y.; Zhang, Y. H.; Wang, L.; Zhang, W. B.; Zhang, Y. J.; Xiao, S. Y. et al. A transistor-like pH-sensitive nanodetergent for selective cancer therapy. Nat. Nanotechnol. 2022, 17, 541–551.

[47]

Elsabahy, M.; Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545–2561.

[48]

Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.

[49]

Guo, S.; Li, K.; Hu, B.; Li, C. H.; Zhang, M. J.; Hussain, A.; Wang, X. X.; Cheng, Q.; Yang, F.; Ge, K. et al. Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment. Exploration 2021, 1, 35–49.

[50]

Ling, X.; Han, W. B.; Jiang, X. M.; Chen, X.; Rodriguez, M.; Zhu, P. P.; Wu, T.; Lin, W. B. Point-source burst of coordination polymer nanoparticles for tri-modality cancer therapy. Biomaterials 2021, 270, 120690.

[51]
Woo, S. R.; Fuertes, M. B.; Corrales, L.; Spranger, S.; Furdyna, M. J.; Leung, M. Y. K.; Duggan, R.; Wang, Y.; Barber, G. N.; Fitzgerald, K. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014, 41, 830–842.
DOI
[52]
Deng, L. F.; Liang, H.; Xu, M.; Yang, X. M.; Burnette, B.; Arina, A.; Li, X. D.; Mauceri, H.; Beckett, M.; Darga, T. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014, 41, 843–852.
DOI
[53]

Gao, P.; Ascano, M.; Wu, Y.; Barchet, W.; Gaffney, B. L.; Zillinger, T.; Serganov, A. A.; Liu, Y. Z.; Jones, R. A.; Hartmann, G.; Tuschl, T.; Patel, D. J. Cyclic [G(2', 5')pA(3', 5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 2013, 153, 1094–1107.

[54]
Ablasser, A.; Goldeck, M.; Cavlar, T.; Deimling, T.; Witte, G.; Röhl, I.; Hopfner, K. P.; Ludwig, J.; Hornung, V. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 2013, 498, 380–384.
DOI
[55]

Zhang, X.; Shi, H. P.; Wu, J. X.; Zhang, X. W.; Sun, L. J.; Chen, C.; Chen, Z. J. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 2013, 51, 226–235.

[56]

Corrales, L.; McWhirter, S. M.; Dubensky, T. W., Jr.; Gajewski, T. F. The host STING pathway at the interface of cancer and immunity. J. Clin. Invest. 2016, 126, 2404–2411.

[57]

Koshy, S. T.; Cheung, A. S.; Gu, L.; Graveline, A. R.; Mooney, D. J. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv. Biosyst. 2017, 1, 1600013.

[58]

Shae, D.; Becker, K. W.; Christov, P.; Yun, D. S.; Lytton-Jean, A. K. R.; Sevimli, S.; Ascano, M.; Kelley, M.; Johnson, D. B.; Balko, J. M. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 2019, 14, 269–278.

[59]

Shae, D.; Baljon, J. J.; Wehbe, M.; Christov, P. P.; Becker, K. W.; Kumar, A.; Suryadevara, N.; Carson, C. S.; Palmer, C. R.; Knight, F. C. et al. Co-delivery of peptide neoantigens and stimulator of interferon genes agonists enhances response to cancer vaccines. ACS Nano 2020, 14, 9904–9916.

[60]

Hsu, P. H.; Almutairi, A. Recent progress of redox-responsive polymeric nanomaterials for controlled release. J. Mater. Chem. B 2021, 9, 2179–2188.

[61]

Bansal, A.; Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 2018, 217, 2291–2298.

[62]

Liou, G. Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496.

[63]

Gou, J. X.; Liang, Y. H.; Miao, L. L.; Guo, W.; Chao, Y. H.; He, H. B.; Zhang, Y.; Yang, J. Y.; Wu, C. F.; Yin, T. et al. Improved tumor tissue penetration and tumor cell uptake achieved by delayed charge reversal nanoparticles. Acta Biomater. 2017, 62, 157–166.

[64]

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

[65]

Jia, X. B.; He, J. P.; Shen, L. Y.; Chen, J. Z.; Wei, Z. Y.; Qin, X.; Niu, D. C.; Li, Y. S.; Shi, J. L. Gradient redox-responsive and two-stage rocket-mimetic drug delivery system for improved tumor accumulation and safe chemotherapy. Nano Lett. 2019, 19, 8690–8700.

[66]

Benjaminsen, R. V.; Mattebjerg, M. A.; Henriksen, J. R.; Moghimi, S. M.; Andresen, T. L. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol. Ther. 2013, 21, 149–157.

[67]

Vermeulen, L. M. P.; Brans, T.; Samal, S. K.; Dubruel, P.; Demeester, J.; De Smedt, S. C.; Remaut, K.; Braeckmans, K. Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles. ACS Nano 2018, 12, 2332–2345.

[68]

Cai, K. M.; He, X.; Song, Z. Y.; Yin, Q.; Zhang, Y. F.; Uckun, F. M.; Jiang, C.; Cheng, J. J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J. Am. Chem. Soc. 2015, 137, 3458–3461.

[69]
Liu, X. H.; Li, Y. H.; Wang, K. Y.; Chen, Y. Y.; Shi, M. W.; Zhang, X.; Pan, W.; Li, N.; Tang, B. GSH-responsive nanoprodrug to inhibit glycolysis and alleviate immunosuppression for cancer therapy. Nano Lett. 2021, 21, 7862–7869.
DOI
[70]

Golding, J. P.; Wardhaugh, T.; Patrick, L.; Turner, M.; Phillips, J. B.; Bruce, J. I.; Kimani, S. G. Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. Br. J. Cancer 2013, 109, 976–982.

[71]
Klebanoff, C. A.; Finkelstein, S. E.; Surman, D. R.; Lichtman, M. K.; Gattinoni, L.; Theoret, M. R.; Grewal, N.; Spiess, P. J.; Antony, P. A.; Palmer, D. C. et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 2004, 101, 1969–1974.
DOI
[72]

Wallace, A.; Kapoor, V.; Sun, J.; Mrass, P.; Weninger, W.; Heitjan, D. F.; June, C.; Kaiser, L. R.; Ling, L. E.; Albelda, S. M. Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin. Cancer Res. 2008, 14, 3966–3974.

[73]

Conlon, K. C.; Lugli, E.; Welles, H. C.; Rosenberg, S. A.; Fojo, A. T.; Morris, J. C.; Fleisher, T. A.; Dubois, S. P.; Perera, L. P.; Stewart, D. M. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 2015, 33, 74–82.

[74]

Huang, B.; Abraham, W. D.; Zheng, Y. R.; Bustamante Lopez, S. C.; Luo, S. S.; Irvine, D. J. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 2015, 7, 291ra94.

[75]

Stephan, M. T.; Moon, J. J.; Um, S. H.; Bershteyn, A.; Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 2010, 16, 1035–1041.

[76]

Tang, L.; Zheng, Y. R.; Melo, M. B.; Mabardi, L.; Castaño, A. P.; Xie, Y. Q.; Li, N.; Kudchodkar, S. B.; Wong, H. C.; Jeng, E. K. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 2018, 36, 707–716.

[77]

de Gracia Lux, C.; Joshi-Barr, S.; Nguyen, T.; Mahmoud, E.; Schopf, E.; Fomina, N.; Almutairi, A. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 15758–15764.

[78]

Shim, M. S.; Xia, Y. A. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem., Int. Ed. 2013, 52, 6926–6929.

[79]

Wilson, D. S.; Dalmasso, G.; Wang, L. X.; Sitaraman, S. V.; Merlin, D.; Murthy, N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater. 2010, 9, 923–928.

[80]

Yuan, Y. Y.; Liu, J.; Liu, B. Conjugated-polyelectrolyte-based polyprodrug: Targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angew. Chem., Int. Ed. 2014, 53, 7163–7168.

[81]

Wang, Y. C.; Shim, M. S.; Levinson, N. S.; Sung, H. W.; Xia, Y. N. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater. 2014, 24, 4206–4220.

[82]
Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria in cancer cells: What is so special about them? Trends Cell Biol. 2008, 18, 165–173.
DOI
[83]

Pathania, D.; Millard, M.; Neamati, N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev. 2009, 61, 1250–1275.

[84]

Jeena, M. T.; Palanikumar, L.; Go, E. M.; Kim, I.; Kang, M. G.; Lee, S.; Park, S.; Choi, H.; Kim, C.; Jin, S. M. et al. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat. Commun. 2017, 8, 26.

[85]

Zhang, W. J.; Hu, X. L.; Shen, Q.; Xing, D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat. Commun. 2019, 10, 1704.

[86]

Shibasaki, H.; Kinoh, H.; Cabral, H.; Quader, S.; Mochida, Y.; Liu, X. Y.; Toh, K.; Miyano, K.; Matsumoto, Y.; Yamasoba, T. et al. Efficacy of pH-sensitive nanomedicines in tumors with different c-MYC expression depends on the intratumoral activation profile. ACS Nano 2021, 15, 5545–5559.

[87]

Wang, M.; Sun, S.; Neufeld, C. I.; Perez-Ramirez, B.; Xu, Q. B. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 13444–13448.

[88]

Zhou, Z. J.; Song, J. B.; Nie, L. M.; Chen, X. Y. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597–6626.

[89]
Xu, X. D.; Saw, P. E.; Tao, W.; Li, Y. J.; Ji, X. Y.; Bhasin, S.; Liu, Y. L.; Ayyash, D.; Rasmussen, J.; Huo, M. et al. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater. 2017, 29, 1700141.
DOI
[90]

Grek, C. L.; Tew, K. D. Redox metabolism and malignancy. Curr. Opin. Pharmacol. 2010, 10, 362–368.

[91]

Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

[92]

He, H. N.; Sun, L.; Ye, J. X.; Liu, E. G.; Chen, S. H.; Liang, Q. L.; Shin, M. C.; Yang, V. C. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J. Control. Release 2016, 240, 67–76.

[93]

Cabral-Pacheco, G. A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuna, J. M.; Perez-Romero, B. A.; Guerrero-Rodriguez, J. F.; Martinez-Avila, N.; Martinez-Fierro, M. L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 2020, 21, 9739.

[94]

Dong, H. N.; Pang, L.; Cong, H. L.; Shen, Y. Q.; Yu, B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug. Deliv. 2019, 26, 416–432.

[95]

Meighan, S. E.; Meighan, P. C.; Choudhury, P.; Davis, C. J.; Olson, M. L.; Zornes, P. A.; Wright, J. W.; Harding, J. W. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J. Neurochem. 2006, 96, 1227–1241.

[96]

Callmann, C. E.; Barback, C. V.; Thompson, M. P.; Hall, D. J.; Mattrey, R. F.; Gianneschi, N. C. Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors. Adv. Mater. 2015, 27, 4611–4615.

[97]

Han, M.; Huang-Fu, M. Y.; Guo, W. W.; Guo, N. N.; Chen, J. J.; Liu, H. N.; Xie, Z. Q.; Lin, M. T.; Wei, Q. C.; Gao, J. Q. MMP-2-sensitive HA end-conjugated poly(amidoamine) dendrimers via click reaction to enhance drug penetration into solid tumor. ACS Appl. Mater. Interfaces 2017, 9, 42459–42470.

[98]

Gordon, M. R.; Zhao, B.; Anson, F.; Fernandez, A.; Singh, K.; Homyak, C.; Canakci, M.; Vachet, R. W.; Thayumanavan, S. Matrix metalloproteinase-9-responsive nanogels for proximal surface conversion and activated cellular uptake. Biomacromolecules 2018, 19, 860–871.

[99]

Qiu, N. S.; Liu, X. R.; Zhong, Y.; Zhou, Z. X.; Piao, Y.; Miao, L.; Zhang, Q. Z.; Tang, J. B.; Huang, L.; Shen, Y. Q. Esterase-activated charge-reversal polymer for fibroblast-exempt cancer gene therapy. Adv. Mater. 2016, 28, 10613–10622.

[100]

Saw, P. E.; Yao, H. R.; Lin, C. H.; Tao, W.; Farokhzad, O. C.; Xu, X. D. Stimuli-responsive polymer-prodrug hybrid nanoplatform for multistage siRNA delivery and combination cancer therapy. Nano Lett. 2019, 19, 5967–5974.

[101]

Sui, B. L.; Cheng, C.; Shi, S. S.; Wang, M. M.; Xu, P. S. Esterase-activatable and glutathione-responsive triptolide nano-prodrug for the eradication of pancreatic cancer. Adv. Nanobiomed Res. 2021, 1, 2100040.

[102]

Whitfield, J. B. Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci. 2001, 38, 263–355.

[103]
Brennan, P. N.; Dillon, J. F.; Tapper, E. B. Gamma-glutamyl transferase (γ-GT)-an old dog with new tricks? Liver Int. 2022, 42, 9–15.
DOI
[104]

Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799–809.

[105]

Syvänen, S.; Edén, D.; Sehlin, D. Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab')2 fragment. Biochem. Biophys. Res. Commun. 2017, 493, 120–125.

[106]

Wang, G. W.; Zhou, Z. X.; Zhao, Z. H.; Li, Q. Y.; Wu, Y. L.; Yan, S.; Shen, Y. Q.; Huang, P. T. Enzyme-triggered transcytosis of dendrimer-drug conjugate for deep penetration into pancreatic tumors. ACS Nano 2020, 14, 4890–4904.

[107]

Mu, J.; Lin, J.; Huang, P.; Chen, X. Y. Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem. Soc. Rev. 2018, 47, 5554–5573.

[108]

Hoffman, A. S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 2013, 65, 10–16.

[109]

Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Supramolecular biomaterials. Nat. Mater. 2016, 15, 13–26.

[110]

Tao, Z.; Zhu, H.; Zhang, J. T.; Huang, Z. M.; Xiang, Z.; Hong, T. Recent advances of eosinophils and its correlated diseases. Front. Public Health 2022, 10, 954721.

[111]

Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

[112]

Lao, Y. H.; Phua, K. K. L.; Leong, K. W. Aptamer nanomedicine for cancer therapeutics: Barriers and potential for translation. ACS Nano 2015, 9, 2235–2254.

[113]

Naito, M.; Ishii, T.; Matsumoto, A.; Miyata, K.; Miyahara, Y.; Kataoka, K. A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem., Int. Ed. 2012, 51, 10751–10755.

[114]

Biswas, S.; Kinbara, K.; Niwa, T.; Taguchi, H.; Ishii, N.; Watanabe, S.; Miyata, K.; Kataoka, K.; Aida, T. Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nat. Chem. 2013, 5, 613–620.

[115]
Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.
DOI
[116]

Wu, C. C.; Chen, T.; Han, D.; You, M. X.; Peng, L.; Cansiz, S.; Zhu, G. Z.; Li, C. M.; Xiong, X. L.; Jimenez, E. et al. Engineering of switchable aptamer micelle flares for molecular imaging in living cells. ACS Nano 2013, 7, 5724–5731.

[117]
Qian, C. G.; Chen, Y. L.; Zhu, S.; Yu, J. C.; Zhang, L.; Feng, P. J.; Tang, X.; Hu, Q. Y.; Sun, W. J.; Lu, Y. et al. ATP-responsive and near-infrared-emissive nanocarriers for anticancer drug delivery and real-time imaging. Theranostics 2016, 6, 1053–1064.
DOI
[118]
Deng, J.; Walther, A. ATP-responsive and ATP-fueled self-assembling systems and materials. Adv. Mater. 2020, 32, 2002629.
DOI
[119]

Chen, B. L.; Yan, Y.; Yang, Y.; Cao, G.; Wang, X.; Wang, Y. Q.; Wan, F. J.; Yin, Q. Q.; Wang, Z. H.; Li, Y. F. et al. A pyroptosis nanotuner for cancer therapy. Nat. Nanotechnol. 2022, 17, 788–798.

[120]

Tang, L. G.; Wang, Z. T.; Mu, Q. C.; Yu, Z. Q.; Jacobson, O.; Li, L.; Yang, W. J.; Huang, C. M.; Kang, F.; Fan, W. P. et al. Targeting neutrophils for enhanced cancer theranostics. Adv. Mater. 2020, 32, 2002739.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 July 2022
Revised: 31 August 2022
Accepted: 01 September 2022
Published: 15 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors would like to acknowledge the support from the National Key R&D Program of China (No. 2021YFA0909900), the National Natural Science Foundation of China (No. 52173142), Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents, and the grants from the Startup Package of Zhejiang University.

Return