Journal Home > Volume 16 , Issue 2

Developing scintillators with high light yield (LY), superior irradiation stability, and weak afterglow is of significance for the realization of low-dose high-resolution X-ray excited optical luminescence (XEOL) imaging. Lanthanide doped fluoride nanoparticles possess low toxicity, superior environmental stability, facial fabrication process, and tunable emissions, which are appropriate candidates for the next generation nanoscintillators (NSs). However, the low LY and strong positive hysteresis greatly restrict their practical application. Here, we propose an effective strategy that engineers energy gap to significantly enhance the LY. Our results verify that the tetragonal LiLuF4 host benefits the crystal level splitting of Tb3+ ions, which greatly promotes the electrons population on the Tb3+:5D4 level followed by the enhanced LY. The LY of LiLuF4:Tb@LiLuF4 NSs is calculated to be ~ 31,169 photons/MeV, which is much higher than the lead halide perovskite colloidal CsPbBr3 (~ 21,000 photons/MeV) and LuAG:Ce (~ 22,000 photons/MeV) scintillators. Moreover, the positive hysteresis is remarkably restricted after coating a thin shell. The X-ray detection limit and spatial resolution are measured to be ~ 21.27 nGy/s and ~ 7.2 lp/mm, respectively. We further verify that this core/shell NS can be employed as scintillating screen to realize XEOL imaging under the low dose rate of 13.86 μGy/s. Our results provide an effective route to develop high performance NSs, which will promote great opportunities for the development of low-dose high-resolution XEOL imaging devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancing light yield of Tb3+-doped fluoride nanoscintillator with restricted positive hysteresis for low-dose high-resolution X-ray imaging

Show Author's information Yi Cheng1Lei Lei1( )Wenjuan Zhu2Yubin Wang1Hai Guo3( )Shiqing Xu1( )
Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Department of Physics, Zhejiang Normal University, Jinhua 321004, China

Abstract

Developing scintillators with high light yield (LY), superior irradiation stability, and weak afterglow is of significance for the realization of low-dose high-resolution X-ray excited optical luminescence (XEOL) imaging. Lanthanide doped fluoride nanoparticles possess low toxicity, superior environmental stability, facial fabrication process, and tunable emissions, which are appropriate candidates for the next generation nanoscintillators (NSs). However, the low LY and strong positive hysteresis greatly restrict their practical application. Here, we propose an effective strategy that engineers energy gap to significantly enhance the LY. Our results verify that the tetragonal LiLuF4 host benefits the crystal level splitting of Tb3+ ions, which greatly promotes the electrons population on the Tb3+:5D4 level followed by the enhanced LY. The LY of LiLuF4:Tb@LiLuF4 NSs is calculated to be ~ 31,169 photons/MeV, which is much higher than the lead halide perovskite colloidal CsPbBr3 (~ 21,000 photons/MeV) and LuAG:Ce (~ 22,000 photons/MeV) scintillators. Moreover, the positive hysteresis is remarkably restricted after coating a thin shell. The X-ray detection limit and spatial resolution are measured to be ~ 21.27 nGy/s and ~ 7.2 lp/mm, respectively. We further verify that this core/shell NS can be employed as scintillating screen to realize XEOL imaging under the low dose rate of 13.86 μGy/s. Our results provide an effective route to develop high performance NSs, which will promote great opportunities for the development of low-dose high-resolution XEOL imaging devices.

Keywords: high-resolution, low-dose, nanoscintillators, X-ray excited optical luminescence (XEOL) imaging, crystal level splitting

References(47)

[1]

Wang, X.; Shi, H. F.; Ma, H. L.; Ye, W. P.; Song, L. L.; Zan, J.; Yao, X. K.; Ou, X. Y.; Yang, G. H.; Zhao, Z. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics 2021, 15, 187–192.

[2]

Zhou, Y.; Chen, J.; Bakr, O. M.; Mohammed, O. F. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 2021, 6, 739–768.

[3]

Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.

[4]

Zhang, M. Y.; Wang, X. M.; Yang, B.; Zhu, J. S.; Niu, G. D.; Wu, H. D.; Yin, L. X.; Du, X. Y.; Niu, M.; Ge, Y. S. et al. Metal halide scintillators with fast and self-absorption-free defect-bound excitonic radioluminescence for dynamic X-ray imaging. Adv. Funct. Mater. 2021, 31, 2007921.

[5]

Li, H. Y.; Song, J. M.; Pan, W. T.; Xu, D. R.; Zhu, W. A.; Wei, H. T.; Yang, B. Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater. 2020, 32, 2003790.

[6]

Ahmad, F.; Wang, X. Y.; Jiang, Z.; Yu, X. J.; Liu, X. Y.; Mao, R. H.; Chen, X. Y.; Li, W. W. Codoping enhanced radioluminescence of nanoscintillators for X-ray-activated synergistic cancer therapy and prognosis using metabolomics. ACS Nano 2019, 13, 10419–10433.

[7]

Pratt, E. C.; Shaffer, T. M.; Zhang, Q. Z.; Drain, C. M.; Grimm, J. Nanoparticles as multimodal photon transducers of ionizing radiation. Nat. Nanotechnol. 2018, 13, 418–426.

[8]

Ma, J. J.; Zhu, W. J.; Lei, L.; Deng, D. G.; Hua, Y. J.; Yang, Y. M.; Xu, S. Q.; Prasad, P. N. Highly efficient NaGdF4: Ce/Tb nanoscintillator with reduced afterglow and light scattering for high-resolution X-ray imaging. ACS Appl. Mater. Interfaces 2021, 13, 44596–44603.

[9]

Ma, W. B.; Su, Y. R.; Zhang, Q. S.; Deng, C.; Pasquali, L.; Zhu, W. J.; Tian, Y.; Ran, P.; Chen, Z.; Yang, G. Y. et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nat. Mater. 2022, 21, 210–216.

[10]

Chen, M. X.; Sun, L. J.; Ou, X. Y.; Yang, H. H.; Liu, X. G.; Dong, H. L.; Hu, W. P.; Duan, X. F. Organic semiconductor single crystals for X-ray imaging. Adv. Mater. 2021, 33, 2104749.

[11]

Zhu, W. J.; Ma, W. B.; Su, Y. R.; Chen, Z.; Chen, X. Y.; Ma, Y. G.; Bai, L. Z.; Xiao, W. G.; Liu, T. Y.; Zhu, H. M. et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Sci. Appl. 2020, 9, 112.

[12]

Yang, B.; Yin, L. X.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Tan, Z. F.; Miao, X. S.; Niu, M.; Du, X. Y.; Song, H. S. et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater. 2019, 31, 1904711.

[13]

Kim, Y. C.; Kim, K. H.; Son, D. Y.; Jeong, D. N.; Seo, J. Y.; Choi, Y. S.; Han, I. T.; Lee, S. Y.; Park, N. G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 2017, 550, 87–91.

[14]

Shao, W. Y.; Wang, X.; Zhang, Z. Z.; Huang, J.; Han, Z. Y.; Pi, S.; Xu, Q.; Zhang, X. D.; Xia, X. C.; Liang, H. W. Highly efficient and flexible scintillation screen based on manganese(II) activated 2D perovskite for planar and nonplanar high-resolution X-ray imaging. Adv. Opt. Mater. 2022, 10, 2102282.

[15]

Cho, S.; Kim, S.; Kim, J.; Jo, Y.; Ryu, I.; Hong, S.; Lee, J. J.; Cha, S.; Nam, E. B.; Lee, S. U. et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light:Sci. Appl. 2020, 9, 156.

[16]

Rowlands, J. A. Material change for X-ray detectors. Nature 2017, 550, 47–48.

[17]

Zhang, Y. H.; Sun, R. J.; Qu, X. Y.; Fu, K. F.; Chen, Q. S.; Ding, Y. C.; Xu, L. J.; Liu, L. M.; Han, Y.; Malko, A. V. et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 2019, 13, 2520–2525.

[18]

Meng, H. X.; Zhu, W. J.; Li, F. Y.; Huang, X. M.; Qin, Y. Y.; Liu, S. J.; Yang, Y.; Huang, W.; Zhao, Q. Highly emissive and stable five-coordinated manganese(II) complex for X-ray imaging. Laser Photonics Rev. 2021, 15, 2100309.

[19]
BücheleP.RichterM.TeddeS. F.MattG. J.AnkahG. N.FischerR.BieleM.MetzgerW.LilliuS.BikondoaO. X-ray imaging with scintillator-sensitized hybrid organic photodetectorsNat. Photonics2015984384810.1038/nphoton.2015.216

Büchele, P.; Richter, M.; Tedde, S. F.; Matt, G. J.; Ankah, G. N.; Fischer, R.; Biele, M.; Metzger, W.; Lilliu, S.; Bikondoa, O. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photonics 2015, 9, 843–848.

[20]

Heo, J. H.; Shin, D. H.; Park, J. K.; Kim, D. H.; Lee, S. J.; Im, S. H. High-Performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743.

[21]

Zhang, M. Y.; Zhu, J. S.; Yang, B.; Niu, G. D.; Wu, H. D.; Zhao, X.; Yin, L. X.; Jin, T.; Liang, X. Y.; Tang, J. Oriented-structured CsCu2I3 film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging. Nano Lett. 2021, 21, 1392–1399.

[22]

Lin, Z. Y.; Lv, S. C.; Yang, Z. M.; Qiu, J. R.; Zhou, S. F. Structured scintillators for efficient radiation detection. Adv. Sci. 2022, 9, 2102439.

[23]

Guo, L. N.; Liu, S.; Chen, D. J.; Zhang, S. J.; Liu, Y.; Zhong, Z. Y.; Falco, C. M. Structure and scintillation properties of CsI(Tl) films on Si single crystal substrates. Appl. Surf. Sci. 2016, 384, 225–229.

[24]

Xu, J.; Shi, Y.; Xie, J. J.; Lei, F. Fabrication, microstructure, and luminescent properties of Ce3+-doped Lu3Al5O12 (Ce:LuAG) transparent ceramics by low-temperature vacuum sintering. J. Am. Ceram. Soc. 2013, 96, 1930–1936.

[25]

Pan, W. C.; Wu, H. D.; Luo, J. J.; Deng, Z. Z.; Ge, C.; Chen, C.; Jiang, X. W.; Yin, W. J.; Niu, G. D.; Zhu, L. J. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 2017, 11, 726–732.

[26]

Tie, S. J.; Zhao, W.; Xin, D. Y.; Zhang, M.; Long, J. D.; Chen, Q.; Zheng, X. J.; Zhu, J. G.; Zhang, W. H. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Adv. Mater. 2020, 32, 2001981.

[27]

Liu, Y. C.; Zhang, Y. X.; Zhu, X. J.; Feng, J. S.; Spanopoulos, I.; Ke, W. J.; He, Y. H.; Ren, X. D.; Yang, Z.; Xiao, F. W. et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 2021, 33, 2006010.

[28]

Zhang, H.; Yang, Z.; Zhou, M.; Zhao, L.; Jiang, T. M.; Yang, H. Y.; Yu, X.; Qiu, J. B.; Yang, Y.; Xu, X. H. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater. 2021, 33, 2102529.

[29]

Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G. J.; Azimi, H.; Brabec, C. J.; Stangl, J.; Kovalenko, M. V. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 2015, 9, 444–449.

[30]

Jiang, T. M.; Chen, Z.; Chen, X.; Chen, X. Y.; Xu, X. H.; Liu, T. Y.; Bai, L. Z.; Yang, D. X.; Di, D. W.; Sha, W. E. I. et al. Power conversion efficiency enhancement of low-bandgap mixed Pb-Sn perovskite solar cells by improved interfacial charge transfer. ACS Energy Lett. 2019, 4, 1784–1790.

[31]

Cao, F.; Xu, X. B.; Yu, D. J.; Zeng, H. B. Lead-free halide perovskite photodetectors spanning from near-infrared to X-ray range: A review. Nanophotonics 2021, 10, 2221–2247.

[32]

Lei, H. W.; Hardy, D.; Gao, F. Lead-free double perovskite Cs2AgBiBr6: Fundamentals, applications, and perspectives. Adv. Funct. Mater. 2021, 31, 2105898.

[33]

Liu, Z.; Ju, E. G.; Liu, J. H.; Du, Y. D.; Li, Z. Q.; Yuan, Q. H.; Ren, J. S.; Qu, X. G. Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes. Biomaterials 2013, 34, 7444–7452.

[34]

Liu, F. Y.; He, X. X.; Liu, L.; You, H. P.; Zhang, H. M.; Wang, Z. X. Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging. Biomaterials 2013, 34, 5218–5225.

[35]

Shendrik, R.; Radzhabov, E. Absolute light yield measurements on SrF2 and BaF2 doped with rare earth ions. IEEE Trans. Nucl. Sci. 2014, 61, 406–410.

[36]

Qin, X.; Liu, X. W.; Huang, W.; Bettinelli, M.; Liu, X. G. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects. Chem. Rev. 2017, 117, 4488–4527.

[37]

Huang, P.; Zheng, W.; Tu, D. T.; Shang, X. Y.; Zhang, M. R.; Li, R. F.; Xu, J.; Liu, Y.; Chen, X. Y. Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing. Adv. Sci. 2019, 6, 1802282.

[38]

Chen, D. Q.; Liu, Y.; Chen, J. K.; Huang, H.; Zhong, J. S.; Zhu, Y. W. Yb3+/Ln3+/Mn4+ (Ln = Er, Ho, and Tm) doped Na3ZrF7 phosphors: Oil–water interface cation exchange synthesis, dual-modal luminescence and anti-counterfeiting. J. Mater. Chem. C 2019, 7, 1321–1329.

[39]

Ta Phuoc, K.; Corde, S.; Thaury, C.; Malka, V.; Tafzi, A.; Goddet, J. P.; Shah, R. C.; Sebban, S.; Rousse, A. All-optical compton gamma-ray source. Nat. Photonics 2012, 6, 308–311.

[40]

Tamanoi, F.; Matsumoto, K.; Le Hoang Doan, T.; Shiro, A.; Saitoh, H. Studies on the exposure of gadolinium containing nanoparticles with monochromatic X-rays drive advances in radiation therapy. Nanomaterials 2020, 10, 1341.

[41]

Grim, J. Q.; Li, Q.; Ucer, K. B.; Burger, A.; Bizarri, G. A.; Moses, W. W.; Williams, R. T. The roles of thermalized and hot carrier diffusion in determining light yield and proportionality of scintillators. Phys. Status Solidi (A) 2012, 209, 2421–2426.

[42]

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

[43]

Ogiegło, J. M.; Zych, A.; Jüstel, T.; Meijerink, A.; Ronda, C. R. Luminescence and energy transfer in Lu3Al5O12 scintillators Co-doped with Ce3+ and Pr3+. Opt. Mater. 2013, 35, 322–331.

[44]

Shi, J. S.; Zhang, S. Y. Predicting the position of the spin-forbidden band for Tb3+ ions in crystal hosts. J. Phys.: Condens. Matter 2003, 15, 4101–4107.

[45]

Ou, X. Y.; Qin, X.; Huang, B. L.; Zan, J.; Wu, Q. X.; Hong, Z. Z.; Xie, L. L.; Bian, H. Y.; Yi, Z. G.; Chen, X. F. et al. High-resolution X-ray luminescence extension imaging. Nature 2021, 590, 410–415.

[46]

Min, Q. H.; Lei, J.; Guo, X.; Wang, T.; Yang, Q. H.; Zhou, D. C.; Yu, X.; Yu, S. F.; Qiu, J. B.; Zhan, Q. Q. et al. Atomic-level passivation of individual upconversion nanocrystal for single particle microscopic imaging. Adv. Funct. Mater. 2020, 30, 1906137.

[47]

Xu, H.; Han, S. Y.; Deng, R. R.; Su, Q. Q.; Wei, Y.; Tang, Y. A.; Qin, X.; Liu, X. G. Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices. Nat. Photonics 2021, 15, 732–737.

File
12274_2022_4998_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 July 2022
Revised: 30 August 2022
Accepted: 31 August 2022
Published: 22 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China (No. LZ21A040002), the National Natural Science Foundation of China (Nos. 52172164 and 51872270), the National Natural Science Foundation of China Joint Fund Project (No. U190920054), and the Project funded by China Postdoctoral Science Foundation (No. 2022T150582).

Return