AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient capture of C2H2 from CO2 and CnH4 by a novel fluorinated anion pillared MOF with flexible molecular sieving effect

Lingyao Wang1Nuo Xu1Yongqi Hu1Wanqi Sun1Rajamani Krishna2Jiahao Li1Yunjia Jiang1Simon Duttwyler3Yuanbin Zhang1( )
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Show Author Information

Graphical Abstract

A new TiF62− anion (TIFSIX) pillared metal-organic framework ZNU-5 (ZNU = Zhejiang Normal University) with ultramicropores was reported for highly selective C2H2 capture through gate opening based molecular sieving effect.

Abstract

The efficient separation of acetylene (C2H2) from carbon dioxide (CO2) and CnH4 (n = 1 and 2) to manufacture high purity C2H2 and recover other light hydrocarbons is technologically important, while posing significant challenges. Herein, we reported a new TiF62− anion (TIFSIX) pillared metal-organic framework (MOF) ZNU-5 (ZNU = Zhejiang Normal University) with ultramicropores for highly selective C2H2 capture with low adsorption heat through gate opening based molecular sieving effect. ZNU-5 takes up a large amount of C2H2 (128.6 cm3/g) at 1.0 bar and 298 K but excludes CO2, CH4, and C2H4. Such high capacity has never been realized in MOFs with molecular sieving. The breakthrough experiments further confirmed the highly selective C2H2 separation performance from multi-component gas mixtures. 3.3, 2.8, and 2.2 mmol/g of C2H2 is captured at ZNU-5 from equimolar C2H2/CO2, C2H2/CO2/CH4, and C2H2/CO2/CH4/C2H4 mixtures, respectively. Furthermore, 2.6, 2.0, and 1.5 mmol/g of > 98% purity C2H2 can be recycled from the desorption process. Combining high working capacity, low adsorption heat, as well as good recyclability, ZNU-5 is promising for C2H2 purification.

Electronic Supplementary Material

Download File(s)
12274_2022_4996_MOESM1_ESM.pdf (1.7 MB)

References

[1]
Weissermel, K.; Arpe, H. J. Industrial Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, 2003.
[2]

Zhang, Y. B.; Hu, J. B.; Krishna, R.; Wang, L. Y.; Yang, L. F.; Cui, X. L.; Duttwyler, S.; Xing, H. B. Rational design of microporous MOFs with anionic boron cluster functionality and cooperative dihydrogen binding sites for highly selective capture of acetylene. Angew. Chem., Int. Ed. 2020, 59, 17664–17669.

[3]

Moreau, F.; da Silva, I.; Al Smail, N. H.; Easun, T. L.; Savage, M.; Godfrey, H. G. W.; Parker, S. F.; Manuel, P.; Yang, S. H.; Schröder, M. Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework. Nat. Commun. 2017, 8, 14085.

[4]

Fan, W. D.; Wang, X.; Liu, X. P.; Xu, B.; Zhang, X. R.; Wang, W. J.; Wang, X. K.; Wang, Y. T.; Dai, F. N.; Yuan, D. Q. et al. Regulating C2H2 and CO2 storage and separation through pore environment modification in a microporous Ni-MOF. ACS Sustainable Chem. Eng. 2019, 7, 2134–2140.

[5]

Wang, G. D.; Wang, H. H.; Shi, W. J.; Hou, L.; Wang, Y. Y.; Zhu, Z. H. A highly stable MOF with F and N accessible sites for efficient capture and separation of acetylene from ternary mixtures. J. Mater. Chem. A 2021, 9, 24495–24502.

[6]

Foo, M. L.; Matsuda, R.; Hijikata, Y.; Krishna, R.; Sato, H.; Horike, S.; Hori, A.; Duan, J. G.; Sato, Y.; Kubota, Y. et al. An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. J. Am. Chem. Soc. 2016, 138, 3022–3030.

[7]

Wang, Q. J.; Hu, J. B.; Yang, L. F.; Zhang, Z. Q.; Ke, T.; Cui, X. L.; Xing, H. B. One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator. Nat. Commun. 2022, 13, 2955.

[8]

Li, Y. P.; Wang, Y.; Xue, Y. Y.; Li, H. P.; Zhai, Q. G.; Li, S. N.; Jiang, Y. C.; Hu, M. C.; Bu, X. H. Ultramicroporous building units as a path to Bi-microporous metal-organic frameworks with high acetylene storage and separation performance. Angew. Chem., Int. Ed. 2019, 58, 13590–13595.

[9]

Niu, Z.; Cui, X. L.; Pham, T.; Verma, G.; Lan, P. C.; Shan, C.; Xing, H. B.; Forrest, K. A.; Suepaul, S.; Space, B. et al. A MOF-based ultra-strong acetylene nano-trap for highly efficient C2H2/CO2 separation. Angew. Chem., Int. Ed. 2021, 60, 5283–5288.

[10]

Zhang, L.; Jiang, K.; Yang, L. F.; Li, L. B.; Hu, E. L.; Yang, L.; Shao, K.; Xing, H. B.; Cui, Y. J.; Yang, Y. et al. Benchmark C2H2/CO2 separation in an ultra-microporous metal-organic framework via copper(I)-alkynyl chemistry. Angew. Chem., Int. Ed. 2021, 60, 15995–16002.

[11]

Sun, W. Q.; Hu, J. B.; Jiang, Y. J.; Xu, N.; Wang, L. Y.; Li, J. H.; Hu, Y. Q.; Duttwyler, S.; Zhang, Y. B. Flexible molecular sieving of C2H2 from CO2 by a new cost-effective metal organic framework with intrinsic hydrogen bonds. Chem. Eng. J. 2022, 439, 135745.

[12]

Di, Z. Y.; Pang, J. D.; Hu, F. L.; Wu, M. Y.; Hong, M. C. An ultra-stable microporous supramolecular framework with highly selective adsorption and separation of water over ethanol. Nano Res. 2021, 14, 2584–2588.

[13]

Fan, W. D.; Yuan, S.; Wang, W. J.; Feng, L.; Liu, X. P.; Zhang, X. R.; Wang, X.; Kang, Z. X.; Dai, F. N.; Yuan, D. Q. et al. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.

[14]

Liu, Y.; Xu, Q. Q.; Chen, L. H.; Song, C. H.; Yang, Q. W.; Zhang, Z. G.; Lu, D.; Yang, Y. W.; Ren, Q. L.; Bao, Z. B. Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation. Nano Res. 2022, 15, 7695–7702.

[15]

Chen, S.; Behera, N.; Yang, C.; Dong, Q. B.; Zheng, B. S.; Li, Y. Y.; Tang, Q.; Wang, Z. X.; Wang, Y. Q.; Duan, J. G. A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation. Nano Res. 2021, 14, 546–553.

[16]

Cui, J. Y.; Zhang, Z. Q.; Tan, B.; Zhang, Y. B.; Wang, P. C.; Cui, X. L.; Xing, H. B. Efficient separation of n-butene and iso-butene by flexible ultramicroporous metal-organic frameworks with pocket-like cavities. Chem.—Asian J. 2019, 14, 3572–3576.

[17]

Fu, X. P.; Wang, Y. L.; Zhang, X. F.; Krishna, R.; He, C. T.; Liu, Q. Y.; Chen, B. L. Collaborative pore partition and pore surface fluorination within a metal-organic framework for high-performance C2H2/CO2 separation. Chem. Eng. J. 2022, 432, 134433.

[18]

Duan, J. G.; Higuchi, M.; Zheng, J. J.; Noro, S. I.; Chang, I. Y.; Hyeon-Deuk, K.; Mathew, S.; Kusaka, S.; Sivaniah, E.; Matsuda, R. et al. Density gradation of open metal sites in the mesospace of porous coordination polymers. J. Am. Chem. Soc. 2017, 139, 11576–11583.

[19]

Sharma, S.; Mukherjee, S.; Desai, A. V.; Vandichel, M.; Dam, G. K.; Jadhav, A.; Kociok-Köhn, G.; Zaworotko, M. J.; Ghosh, S. K. Efficient capture of trace acetylene by an ultramicroporous metal-organic framework with purine binding sites. Chem. Mater. 2021, 33, 5800–5808.

[20]

Sun, W. Q.; Hu, J. B.; Duttwyler, S.; Wang, L. Y.; Krishna, R.; Zhang, Y. B. Highly selective gas separation by two isostructural boron cluster pillared MOFs. Sep. Purif. Technol. 2022, 283, 120220.

[21]

Wang, G. D.; Li, Y. Z.; Zhang, W. F; Hou, L.; Wang, Y. Y.; Zhu, Z. H. Acetylene separation by a Ca-MOF containing accessible sites of open metal centers and organic groups. ACS Appl. Mater. Interfaces 2021, 13, 58862–58870.

[22]

Yang, L. F.; Qian, S. H.; Wang, X. B.; Cui, X. L.; Chen, B. L.; Xing, H. B. Energy-efficient separation alternatives: Metal-organic frameworks and membranes for hydrocarbon separation. Chem. Soc. Rev. 2020, 49, 5359–5406.

[23]

Zhang, Y. B.; Cui, X. L.; Xing, H. B. Recent advances in the capture and abatement of toxic gases and vapors by metal-organic frameworks. Mater. Chem. Front. 2021, 5, 5970–6013.

[24]

Zhang, Z.; Peh, S. B.; Wang, Y. X.; Kang, C. J.; Fan, W. D.; Zhao, D. Efficient trapping of trace acetylene from ethylene in an ultramicroporous metal-organic framework: Synergistic effect of high-density open metal and electronegative sites. Angew. Chem., Int. Ed. 2020, 59, 18927–18932.

[25]

Fan, W. D.; Wang, X.; Zhang, X. R.; Liu, X. P.; Wang, Y. T.; Kang, Z. X.; Dai, F. N.; Xu, B.; Wang, R. M.; Sun, D. F. Fine-tuning the pore environment of the microporous Cu-MOF for high propylene storage and efficient separation of light hydrocarbons. ACS Cent. Sci. 2019, 5, 1261–1268.

[26]

Zeng, H.; Xie, M.; Huang, Y. L.; Zhao, Y. F.; Xie, X. J.; Bai, J. P.; Wan, M. Y.; Krishna, R.; Lu, W. G.; Li, D. Induced fit of C2H2 in a flexible MOF through cooperative action of open metal sites. Angew. Chem., Int. Ed. 2019, 58, 8515–8519.

[27]

Fan, W. D.; Ying, Y. P.; Peh, S. B.; Yuan, H. Y.; Yang, Z. Q.;Yuan, Y. D.; Shi, D. C.; Yu, X.; Kang, C. J.; Zhao, D. Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2021, 143, 17716–17723.

[28]

Jiang, Y. J.; Hu, J. B.; Wang, L. Y.; Sun, W. Q.; Xu, N.; Krishna, R.; Duttwyler, S.; Cui, X. L.; Xing, H. B.; Zhang, Y. B. Comprehensive pore tuning in an ultrastable fluorinated anion cross-linked cage-like MOF for simultaneous benchmark propyne recovery and propylene purification. Angew. Chem., Int. Ed. 2022, 61, e202200947.

[29]

Li, S. L.; Zeng, S. L.; Tian, Y. Y.; Jing, X. F.; Sun, F. X.; Zhu, G. S. Two flexible cationic metal-organic frameworks with remarkable stability for CO2/CH4 separation. Nano Res. 2021, 14, 3288–3293.

[30]

Wang, L. Y.; Jiang, T.; Duttwyler, S.; Zhang, Y. B. Supramolecular Cu(II)-dipyridyl frameworks featuring weakly coordinating dodecaborate dianions for selective gas separation. CrystEngComm 2021, 23, 282–291.

[31]

Lin, R. B.; Li, L. B.; Wu, H.; Arman, H.; Li, B.; Lin, R. G.; Zhou, W.; Chen, B. L. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. 2017, 139, 8022–8028.

[32]

Wang, J.; Zhang, Y.; Su, Y.; Liu, X.; Zhang, P. X.; Lin, R. B.; Chen, S. X.; Deng, Q.; Zeng, Z. L.; Deng, S. G. et al. Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation. Nat. Commun. 2022, 13, 200.

[33]

Wang, L. Y.; Sun, W. Q.; Zhang, Y. B.; Xu, N.; Krishna, R.; Hu, J. B.; Jiang, Y. J.; He, Y. B.; Xing, H. B. Interpenetration symmetry control within ultramicroporous robust boron cluster hybrid MOFs for benchmark purification of acetylene from carbon dioxide. Angew. Chem., Int. Ed. 2021, 60, 22865–22870.

[34]

Xu, N.; Hu, J. B.; Wang, L. Y.; Luo, D.; Sun, W. Q.; Hu, Y. Q.; Wang, D. M.; Cui, X. L.; Xing, H. B.; Zhang, Y. B. A TIFSIX pillared MOF with unprecedented zsd topology for efficient separation of acetylene from quaternary mixtures. Chem. Eng. J. 2022, 450, 138034.

[35]

Dong, Q. B.; Zhang, X.; Liu, S.; Lin, R. B.; Guo, Y. N.; Ma, Y. S.; Yonezu, A.; Krishna, R.; Liu, G. P.; Duan, J. G. et al. Tuning gate-opening of a flexible metal-organic framework for ternary gas sieving separation. Angew. Chem., Int. Ed. 2020, 59, 22756–22762.

[36]

Zhang, L.; Jiang, K.; Li, L. B.; Xia, Y. P.; Hu, T. L.; Yang, Y.; Cui, Y. J.; Li, B.; Chen, B. L.; Qian, G. D. Efficient separation of C2H2 from C2H2/CO2 mixtures in an acid-base resistant metal-organic framework. Chem. Commun. 2018, 54, 4846–4849.

[37]

Yang, L. Z.; Yan, L. T.; Wang, Y.; Liu, Z.; He, J. X.; Fu, Q. J.; Liu, D. D.; Gu, X.; Dai, P. C.; Li, L. J.; Zhao, X. B. Adsorption site selective occupation strategy within a metal-organic framework for highly efficient sieving acetylene from carbon dioxide. Angew. Chem., Int. Ed. 2021, 60, 4570–4574.

[38]

Gong, W.; Cui, H.; Xie, Y.; Li, Y. G.; Tang, X. H.; Liu, Y.; Cui, Y.; Chen, B. L. Efficient C2H2/CO2 separation in ultramicroporous metal-organic frameworks with record C2H2 storage density. J. Am. Chem. Soc. 2021, 143, 14869–14876.

[39]

Zhang, J. W.; Hu, M. C.; Li, S. N.; Jiang, Y. C.; Qu, P.; Zhai, Q. G. Assembly of [Cu2(COO)4] and [M3(μ3-O)(COO)6] (M = Sc, Fe, Ga, and In) building blocks into porous frameworks towards ultra-high C2H2/CO2 and C2H2/CH4 separation performance. Chem. Commun. 2018, 54, 2012–2015.

[40]

Ye, Y. X.; Xian, S. K.; Cui, H.; Tan, K.; Gong, L. S.; Liang, B.; Pham, T.; Pandey, H.; Krishna, R.; Lan, P. C. et al. Metal-organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. J. Am. Chem. Soc. 2022, 144, 1681–1689.

[41]

Ye, Y. X.; Ma, Z. L.; Lin, R. B.; Krishna, R.; Zhou, W; Lin, Q. J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2019, 141, 4130–4136.

[42]

Li, H.; Liu, C. P.; Chen, C.; Di, Z. Y.; Yuan, D. Q.; Pang, J. D.; Wei, W.; Wu, M. Y.; Hong, M. C. An unprecedented pillar-cage fluorinated hybrid porous framework with highly efficient acetylene storage and separation. Angew. Chem., Int. Ed. 2021, 60, 7547–7552.

[43]

Cui, X. L.; Chen, K. J.; Xing, H. B.; Yang, Q. W.; Krishna, R.; Bao, Z. B.; Wu, H.; Zhou, W.; Dong, X. L.; Han, Y. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science. 2016, 353, 141–144.

[44]

Dutta, S.; Mukherjee, S.; Qazvini, O. T.; Gupta, A. K.; Sharma, S.; Mahato, D.; Babarao, R.; Ghosh, S. K. Three-in-one C2H2-selectivity-guided adsorptive separation across an isoreticular family of cationic square-lattice MOFs. Angew. Chem., Int. Ed. 2022, 61, e202114132.

[45]

Lee, J.; Chuah, C. Y.; Kim, J.; Kim, Y.; Ko, N.; Seo, Y.; Kim, K.; Bae, T. H.; Lee, E. Separation of acetylene from carbon dioxide and ethylene by a water-stable microporous metal-organic framework with aligned imidazolium groups inside the channels. Angew. Chem., Int. Ed. 2018, 57, 7869–7873.

[46]

Mukherjee, S.; He, Y. H.; Franz, D.; Wang, S. Q.; Xian, W. R.; Bezrukov, A. A.; Space, B.; Xu, Z. T.; He, J.; Zaworotko, M. J. Halogen-C2H2 binding in ultramicroporous metal-organic frameworks (MOFs) for benchmark C2H2/CO2 separation selectivity. Chem.—Eur. J. 2020, 26, 4923–4929.

[47]

Zhao, J. Y.; Li, Q.; Zhu, X. C.; Li, J.; Wu, D. P. Highly robust tetranuclear cobalt-based 3D framework for efficient C2H2/CO2 and C2H2/C2H4 separations. Inorg. Chem. 2020, 59, 14424–14431.

[48]

Meng, L. K.; Yang, L. X.; Chen, C. L.; Dong, X. L.; Ren, S. Y.; Li, G. H.; Li, Y.; Han, Y.; Shi, Z.; Feng, S. H. Selective acetylene adsorption within an imino-functionalized nanocage-based metal-organic framework. ACS Appl. Mater. Interfaces 2020, 12, 5999–6006.

[49]

Peng, Y. L.; Pham, T.; Li, P. F.; Wang, T.; Chen, Y.; Chen, K. J.; Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J. et al. Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene. Angew. Chem., Int. Ed. 2018, 57, 10971–10975.

[50]

Zhang, J. P.; Chen, X. M. Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. J. Am. Chem. Soc. 2009, 131, 5516–5521.

[51]

Zhang, X.; Lin, R. B.; Wu, H.; Huang, Y. H.; Ye, Y. X.; Duan, J. G.; Zhou, W.; Li, J. R.; Chen. B. L. Maximizing acetylene packing density for highly efficient C2H2/CO2 separation through immobilization of amine sites within a prototype MOF. Chem. Eng. J. 2022, 431, 134184.

[52]

Zhang, Y. B.; Wang, L. Y.; Hu, J. B.; Duttwyler, S.; Cui, X. L.; Xing, H. B. Solvent-dependent supramolecular self-assembly of boron cage pillared metal-organic frameworks for selective gas separation. CrystEngComm 2020, 22, 2649–2655.

[53]

Pei, J. Y.; Wen, H. M.; Gu, X. W.; Qian, Q. L.; Yang, Y.; Cui, Y. J.; Li, B.; Chen, B. L.; Qian, G. D. Dense packing of acetylene in a stable and low-cost metal-organic framework for efficient C2H2/CO2 separation. Angew. Chem., Int. Ed. 2021, 60, 25068–25074.

[54]

Sotomayor, F. J.; Lastoskie, C. M. Predicting the breakthrough performance of “gating” adsorbents using osmotic framework-adsorbed solution theory. Langmuir 2017, 33, 11670–11678.

[55]

Pei, J. Y.; Shao, K.; Wang, J. X.; Wen, H. M.; Yang, Y.; Cui, Y. J.; Krishna, R.; Li, B.; Qian, G. D. A chemically stable hofmann-type metal-organic framework with sandwich-like binding sites for benchmark acetylene capture. Adv. Mater. 2020, 32, 1908275.

Nano Research
Pages 3536-3541
Cite this article:
Wang L, Xu N, Hu Y, et al. Efficient capture of C2H2 from CO2 and CnH4 by a novel fluorinated anion pillared MOF with flexible molecular sieving effect. Nano Research, 2023, 16(2): 3536-3541. https://doi.org/10.1007/s12274-022-4996-9
Topics:

999

Views

27

Crossref

21

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 12 July 2022
Revised: 11 August 2022
Accepted: 31 August 2022
Published: 01 October 2022
© Tsinghua University Press 2022
Return