Journal Home > Volume 16 , Issue 2

Polymerization is a valid strategy to solve the dissolution issue of organic electrode materials in aprotic electrolytes. However, conventional polymers usually with amorphous structures and morphology’s influence on electrochemistry have rarely been studied. Herein, a hollow tubular poly phenyl pyrene-4,5,9,10-tetraone (T-PPh-PTO) organic cathode material was designed and synthesized based on the concentration-gradient of the precursor (PTO-Br2) and asymmetrical internal diffusion during the reaction. The unique hollow structure endowed T-PPh-PTO with a short Li+ diffusion path accompanied by a high diffusion coefficient (D Li+ ≈ 10−8 cm2·s−1). Thus, T-PPh-PTO presented a capacitance-dominated redox pseudocapacitance action with an outstanding rate performance (173 mAh·g−1 at 2 A·g−1) and high cycle stability (capacity retention ratio is 91.7% after 2,000 cycles). Our study leads to further developments in designing unique organic structures for energy storage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hollow tubular conjugated organic polymer for lithium batteries

Show Author's information Weijia Zhang§Shibing Zheng§Tao MaTianjiang SunZhanliang Tao( )
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, College of Chemistry, Nankai University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China

§ Weijia Zhang and Shibing Zheng contributed equally to this work.

Abstract

Polymerization is a valid strategy to solve the dissolution issue of organic electrode materials in aprotic electrolytes. However, conventional polymers usually with amorphous structures and morphology’s influence on electrochemistry have rarely been studied. Herein, a hollow tubular poly phenyl pyrene-4,5,9,10-tetraone (T-PPh-PTO) organic cathode material was designed and synthesized based on the concentration-gradient of the precursor (PTO-Br2) and asymmetrical internal diffusion during the reaction. The unique hollow structure endowed T-PPh-PTO with a short Li+ diffusion path accompanied by a high diffusion coefficient (D Li+ ≈ 10−8 cm2·s−1). Thus, T-PPh-PTO presented a capacitance-dominated redox pseudocapacitance action with an outstanding rate performance (173 mAh·g−1 at 2 A·g−1) and high cycle stability (capacity retention ratio is 91.7% after 2,000 cycles). Our study leads to further developments in designing unique organic structures for energy storage.

Keywords: lithium batteries, conjugated organic polymer, hollow tubular structure, ionic migration

References(39)

[1]

Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4, 127–142.

[2]

Liang, Y. L.; Tao, Z. L.; Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2012, 2, 742–769.

[3]

Li, S. W.; Liu, Y. Z.; Dai, L.; Li, S.; Wang, B.; Xie, J.; Li, P. F. A stable covalent organic framework cathode enables ultra-long cycle life for alkali and multivalent metal rechargeable batteries. Energy Storage Mater. 2022, 48, 439–446.

[4]

Wang, D. Y.; Guo, W.; Fu, Y. Z. Organosulfides: An emerging class of cathode materials for rechargeable lithium batteries. Acc. Chem. Res. 2019, 52, 2290–2300.

[5]

Nakahara, K.; Oyaizu, K.; Nishide, H. Organic radical battery approaching practical use. Chem. Lett. 2011, 40, 222–227.

[6]

Nishide, H.; Iwasa, S.; Pu, Y. J.; Suga, T.; Nakahara, K.; Satoh, M. Organic radical battery: Nitroxide polymers as a cathode-active material. Electrochim. Acta 2004, 50, 827–831.

[7]

Dai, G. L.; Liu, Y.; Niu, Z. H.; He, P.; Zhao, Y.; Zhang, X. H.; Zhou, H. S. The design of quaternary nitrogen redox center for high-performance organic battery materials. Matter 2019, 1, 945–958.

[8]

Yang, H. Q.; Lee, J.; Cheong, J. Y.; Wang, Y. F.; Duan, G. G.; Hou, H. Q.; Jiang, S. H.; Kim, I. D. Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: Fundamentals, recent advances, and challenges. Energy Environ. Sci. 2021, 14, 4228–4267.

[9]

Zhu, L. M.; Ding, G. C.; Xie, L. L.; Cao, X. Y.; Liu, J. P.; Lei, X. F.; Ma, J. X. Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries. Chem. Mater. 2019, 31, 8582–8612.

[10]

Liang, Y. L.; Zhang, P.; Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 2013, 4, 1330–1337.

[11]

Yang, J. X.; Su, H.; Wang, Z. P.; Sun, P. F.; Xu, Y. H. An insoluble anthraquinone dimer with near-plane structure as a cathode material for lithium-ion batteries. ChemSusChem 2020, 13, 2436–2442.

[12]

Ouyang, Z. P.; Tranca, D.; Zhao, Y. Z.; Chen, Z. Y.; Fu, X. B.; Zhu, J. H.; Zhai, G. Q.; Ke, C. C.; Kymakis, E.; Zhuang, X. D. Quinone-enriched conjugated microporous polymer as an organic cathode for Li-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 9064–9073.

[13]

Wang, X. C.; Shang, Z. F.; Yang, A. K.; Zhang, Q.; Cheng, F. Y.; Jia, D. Z.; Chen, J. Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries. Chem 2019, 5, 364–375.

[14]

Li, M. J.; Yang, J. X.; Shi, Y. Q.; Chen, Z. F.; Bai, P. X.; Su, H.; Xiong, P. X.; Cheng, M. R.; Zhao, J. W.; Xu, Y. H. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries. Adv. Mater. 2022, 34, 2107226.

[15]

Liu, Y. J.; Sun, G. Y.; Cai, X. H.; Yang, F.; Ma, C.; Xue, M.; Tao, X. Y. Nanostructured strategies towards boosting organic lithium-ion batteries. J. Energy Chem. 2021, 54, 179–193.

[16]

Song, Z. P.; Qian, Y. M.; Gordin, M. L.; Tang, D. H.; Xu, T.; Otani, M.; Zhan, H.; Zhou, H. S.; Wang, D. H. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew Chem., Int. Ed. 2015, 54, 13947–13951.

[17]

Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H. et al. Polymer-bound pyrene-4, 5, 9, 10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 2012, 134, 19694–19700.

[18]

Zhu, D. Y.; Xu, G. Y.; Barnes, M.; Li, Y. L.; Tseng, C. P.; Zhang, Z. Q.; Zhang, J. J.; Zhu, Y. F.; Khalil, S.; Rahman, M. M. et al. Covalent organic frameworks for batteries. Adv. Funct. Mater. 2021, 31, 2100505.

[19]

Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Covalent-organic frameworks: Advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 2020, 10, 1904199.

[20]

Zheng, S. B.; Shi, D. J.; Yan, D.; Wang, Q. R.; Sun, T. T.; Ma, T.; Li, L.; He, D.; Tao, Z. L.; Chen, J. Orthoquinone-based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc-organic batteries. Angew Chem., Int. Ed. 2022, 61, e202117511.

[21]

Chang, Z.; Qiao, Y.; Yang, H. J.; Deng, H.; Zhu, X. Y.; He, P.; Zhou, H. S. Applications of metal-organic frameworks (MOFs) materials in lithium-ion battery/lithium-metal battery electrolytes. Acta Chim. Sinica 2021, 79, 139–145.

[22]

Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

[23]

Wang, L.; Han, Y. Z.; Feng, X.; Zhou, J. W.; Qi, P. F.; Wang, B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord. Chem. Rev. 2016, 307, 361–381.

[24]

Ke, F. S.; Wu, Y. S.; Deng, H. X. Metal-organic frameworks for lithium ion batteries and supercapacitors. J. Solid State Chem. 2015, 223, 109–121.

[25]

Jiang, C.; Tang, M.; Zhu, S. L.; Zhang, J. D.; Wu, Y. C.; Chen, Y.; Xia, C.; Wang, C. L.; Hu, W. P. Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs). Angew Chem., Int. Ed. 2018, 57, 16072–16076.

[26]

Wang, Y. T.; Chen, J.; Wang, G. P.; Yu, Y. L.; Wang, J. H.; Qiu, H. D. Fluorescent determination of cysteine and homocysteine via adjustable synthesis of flower-shaped covalent organic frameworks. Sensors Actuat. B: Chem. 2022, 359, 131555.

[27]

Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034.

[28]

Zheng, S. B.; Miao, L. C.; Sun, T. J.; Li, L.; Ma, T.; Bao, J. Q.; Tao, Z. L.; Chen, J. An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries. J. Mater. Chem. A 2021, 9, 2700–2705.

[29]

Lv, H.; Lopes, A.; Xu, D.; Liu, B. Multimetallic hollow mesoporous nanospheres with synergistically structural and compositional effects for highly efficient ethanol electrooxidation. ACS Cent. Sci. 2018, 4, 1412–1419.

[30]

Li, X. X.; Cheng, F. Y.; Guo, B.; Chen, J. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 2005, 109, 14017–14024.

[31]

Fang, Y. J.; Luan, D. Y.; Chen, Y.; Gao, S. Y.; Lou, X. W. D. Synthesis of copper-substituted CoS2@CuxS double-shelled nanoboxes by sequential ion exchange for efficient sodium storage. Angew Chem., Int. Ed. 2020, 59, 2644–2648.

[32]

Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; Xia, Y. Z.; Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 2017, 4, 1600262.

[33]

Chen, F.; Zhang, W. X.; Fu, J. R.; Yang, Z. H.; Fan, X. M.; Zhang, W. B.; Chen, Z. X.; Huang, M. Q.; Yang, S. H. Sequential precipitation induced interdiffusion: A general strategy to synthesize microtubular materials for high performance lithium ion battery electrodes. J. Mater. Chem. A 2018, 6, 18430–18437.

[34]

Shao, N.; Sun, X. G.; Dai, S.; Jiang, D. E. Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. J. Phys. Chem. B 2011, 115, 12120–12125.

[35]

Tang, M. Y.; Zhu, Q. N.; Hu, P. F.; Jiang, L.; Liu, R. Y.; Wang, J. W.; Cheng, L. W.; Zhang, X. H.; Chen, W. X.; Wang, H. Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry. Adv. Funct. Mater. 2021, 31, 2102011.

[36]

Chen, D. Y.; Avestro, A. J.; Chen, Z. H.; Sun, J. L.; Wang, S. J.; Xiao, M.; Erno, Z.; Algaradah, M. M.; Nassar, M. S.; Amine, K. et al. A rigid naphthalenediimide triangle for organic rechargeable lithium-ion batteries. Adv. Mater. 2015, 27, 2907–2912.

[37]

Jing, Y.; Liang, Y. L.; Gheytani, S.; Yao, Y. Cross-conjugated oligomeric quinones for high performance organic batteries. Nano Energy 2017, 37, 46–52.

[38]

Ma, T.; Zhao, Q.; Wang, J. B.; Pan, Z.; Chen, J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew Chem., Int. Ed. 2016, 55, 6428–6432.

[39]

Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Redox-active conjugated microporous polymers: A new organic platform for highly efficient energy storage. Chem. Commun. 2014, 50, 4788–4790.

File
12274_2022_4995_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 July 2022
Revised: 24 August 2022
Accepted: 31 August 2022
Published: 19 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 51771094 and 21835004), the National Key Research and Development (R&D) Program of China (No. 2016YFB0901500), the Ministry of Education of China (No. B12015), and Tianjin Natural Science Foundation (No. 18JCZDJC31500).

Return