Journal Home > Volume 16 , Issue 2

An effective method is designed to construct three-dimensional (3D) Nb2C/reduced graphene oxide (rGO) hybrid aerogels through a low-temperature graphene oxide (GO)-assisted hydrothermal self-assembly followed by freeze-drying and annealing. The intimately coupled Nb2C/rGO hybrid aerogel combines the advantages of large specific surface area and rich 3D interconnected porous structure of aerogel as well as high conductivity and low potassium diffusion energy barrier of Nb2C, which not only effectively prevents the self-restacking of Nb2C nanosheets to allow more active sites exposed and accommodate the volume change during the charge/discharge process, but also increases the accessibility of electrolyte and promotes the rapid transfer of ions/electrons. As a result, Nb2C/rGO-2 as the anode of potassium ion batteries (KIBs) delivers a large reversible specific capacity (301.7 mAh·g−1 after 500 cycles at 2.0 A·g−1), an ultrahigh rate capability (155.5 mAh·g−1 at 20 A·g−1), and an excellent long-term large-current cycle stability (198.8 mAh·g−1 after 1,000 cycles at 10 A·g−1, with a retention of 83.3%). Such a high-level electrochemical performance, especially the ultrahigh rate capability, is the best among transition metal carbides and nitride (MXene)-based materials reported so far for KIBs. The diffusion kinetics of K+ is investigated thoroughly, and the synergetic charge–discharge mechanism and the structure–performance relationship of Nb2C/rGO are revealed explicitly. The present work provides a good strategy to solve the self-restacking problem of two-dimensional materials and also enlarges the potential applications of MXenes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational design of 3D porous niobium carbide MXene/rGO hybrid aerogels as promising anode for potassium-ion batteries with ultrahigh rate capability

Show Author's information Cong Liu1Zhitang Fang1Xiaoge Li2Jinhua Zhou3Gang Yang3Luming Peng1Xuefeng Guo1Weiping Ding1Wenhua Hou1( )
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China

Abstract

An effective method is designed to construct three-dimensional (3D) Nb2C/reduced graphene oxide (rGO) hybrid aerogels through a low-temperature graphene oxide (GO)-assisted hydrothermal self-assembly followed by freeze-drying and annealing. The intimately coupled Nb2C/rGO hybrid aerogel combines the advantages of large specific surface area and rich 3D interconnected porous structure of aerogel as well as high conductivity and low potassium diffusion energy barrier of Nb2C, which not only effectively prevents the self-restacking of Nb2C nanosheets to allow more active sites exposed and accommodate the volume change during the charge/discharge process, but also increases the accessibility of electrolyte and promotes the rapid transfer of ions/electrons. As a result, Nb2C/rGO-2 as the anode of potassium ion batteries (KIBs) delivers a large reversible specific capacity (301.7 mAh·g−1 after 500 cycles at 2.0 A·g−1), an ultrahigh rate capability (155.5 mAh·g−1 at 20 A·g−1), and an excellent long-term large-current cycle stability (198.8 mAh·g−1 after 1,000 cycles at 10 A·g−1, with a retention of 83.3%). Such a high-level electrochemical performance, especially the ultrahigh rate capability, is the best among transition metal carbides and nitride (MXene)-based materials reported so far for KIBs. The diffusion kinetics of K+ is investigated thoroughly, and the synergetic charge–discharge mechanism and the structure–performance relationship of Nb2C/rGO are revealed explicitly. The present work provides a good strategy to solve the self-restacking problem of two-dimensional materials and also enlarges the potential applications of MXenes.

Keywords: potassium ion batteries, reduced graphene oxide (rGO), niobium-based transition metal carbides (Nb2C MXene), hybrid aerogel, ultrahigh rate capability

References(68)

[1]

Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.

[2]

Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. A.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 2021, 14, 2186–2243.

[3]

Yue, L. C.; Ma, C. Q.; Yan, S. H.; Wu, Z. G.; Zhao, W. X.; Liu, Q.; Luo, Y. L.; Zhong, B. H.; Zhang, F.; Liu, Y. et al. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. Nano Res. 2021, 15, 186–194.

[4]

Yue, L. C.; Liang, J.; Wu, Z. G.; Zhong, B. H.; Luo, Y. L.; Liu, Q.; Li, T. S.; Kong, Q. Q.; Liu, Y.; Asiri, A. M. et al. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. J. Mater. Chem. A 2021, 9, 11879–11907.

[5]

Yue, L. C.; Wang, D.; Wu, Z. G.; Zhao, W. X.; Ren, Y. C.; Zhang, L. C.; Zhong, B. H.; Li, N.; Tang, B.; Liu, Q. et al. Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode. Chem. Eng. J. 2022, 433, 134477.

[6]

Yue, L. C.; Wu, D. H.; Wu, Z. G.; Zhao, W. X.; Wang, D.; Zhong, B. H.; Liu, Q.; Liu, Y.; Gao, S. Y.; Asiri, A. M. et al. A MnS/FeS2 heterostructure with a high degree of lattice matching anchored into carbon skeleton for ultra-stable sodium-ion storage. J. Mater. Chem. A 2021, 9, 24024–24035.

[7]

Zhao, W. X.; Ma, X. Q.; Yue, L. C.; Zhang, L. C.; Luo, Y. S.; Ren, Y. C.; Zhao, X. E.; Li, N.; Tang, B.; Liu, Q. et al. A gradient hexagonal-prism Fe3Se4@SiO2@C configuration as a highly reversible sodium conversion anode. J. Mater. Chem. A 2022, 10, 4087–4099.

[8]

Liu, S. D.; Kang, L.; Jun, S. C. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv. Mater. 2021, 33, 2004689.

[9]

Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

[10]

Zhang, W. C.; Liu, Y. J.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.

[11]

Imtiaz, S.; Amiinu, I. S.; Xu, Y.; Kennedy, T.; Blackman, C.; Ryan, K. M. Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater. Today 2021, 48, 241–269.

[12]

Wang, B.; Zhang, Z. Y.; Yuan, F.; Zhang, D.; Wang, Q. J.; Li, W.; Li, Z. J.; Wu, Y. A.; Wang, W. An insight into the initial coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chem. Eng. J. 2022, 428, 131093.

[13]

Wu, Y. M.; Zhao, H. T.; Wu, Z. G.; Yue, L. C.; Liang, J.; Liu, Q.; Luo, Y. L.; Gao, S. Y.; Lu, S. Y.; Chen, G. et al. Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Mater. 2021, 34, 483–507.

[14]

Dong, X. Y.; Xing, Z.; Zheng, G. J.; Gao, X. R.; Hong, H. P.; Ju, Z. C.; Zhuang, Q. C. MoS2/N-doped graphene aerogles composite anode for high performance sodium/potassium ion batteries. Electrochim. Acta 2020, 339, 135932.

[15]

Wu, Y. J.; Sun, Y. J.; Zheng, J. F.; Rong, J. H.; Li, H. Y.; Niu, L. MXenes: Advanced materials in potassium ion batteries. Chem. Eng. J. 2021, 404, 126565.

[16]

Liu, C.; Zhou, J. H.; Li, X. G.; Fang, Z. T.; Sun, R.; Yang, G.; Hou, W. H. Surface modification and in situ carbon intercalation of two-dimensional niobium carbide as promising electrode materials for potassium-ion batteries. Chem. Eng. J. 2022, 431, 133838.

[17]

Aslam, M. K.; Xu, M. W. A mini-review: MXene composites for sodium/potassium-ion batteries. Nanoscale 2020, 12, 15993–16007.

[18]

Er, D.; Li, J. W.; Naguib, M.; Gogotsi, Y.; Shenoy, V. B. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 11173–11179.

[19]

Li, J. H.; Rui, B. L.; Wei, W. X.; Nie, P.; Chang, L. M.; Le, Z. Y.; Liu, M. Q.; Wang, H. R.; Wang, L. M.; Zhang, X. G. Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J. Power Sources 2020, 449, 227481.

[20]

Zeng, C.; Xie, F. X.; Yang, X. F.; Jaroniec, M.; Zhang, L.; Qiao, S. Z. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem., Int. Ed. 2018, 57, 8540–8544.

[21]

Wan, L. J.; Tang, Y. Q.; Chen, L.; Wang, K.; Zhang, J. Q.; Gao, Y.; Lee, J. Y.; Lu, T.; Xu, X. T.; Li, J. B. et al. In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved coulombic efficiency and cycling stability. Chem. Eng. J. 2021, 410, 128349.

[22]

Li, L.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J. Power Sources 2017, 364, 234–241.

[23]

Li, Y.; Meng, F. B.; Mei, Y.; Wang, H. G.; Guo, Y. F.; Wang, Y.; Peng, F. X.; Huang, F.; Zhou, Z. W. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.

[24]

Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

[25]

Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

[26]

Zhao, M. Q.; Ren, C. E.; Alhabeb, M.; Anasori, B.; Barsoum, M. W.; Gogotsi, Y. Magnesium-ion storage capability of MXenes. ACS Appl. Energy Mater. 2019, 2, 1572–1578.

[27]

Zhao, R. Z.; Di, H. X.; Hui, X. H.; Zhao, D. Y.; Wang, R. T.; Wang, C. X.; Yin, L. W. Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 246–257.

[28]

Wu, Z. T.; Shang, T. X.; Deng, Y. D.; Tao, Y.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.

[29]

Bao, W. Z.; Liu, L.; Wang, C. Y.; Choi, S.; Wang, D.; Wang, G. X. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702485.

[30]

Mao, J. J.; Iocozzia, J.; Huang, J. Y.; Meng, K.; Lai, Y. K.; Lin, Z. Q. Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 2018, 11, 772–799.

[31]

Yao, X.; Zhao, Y. L. Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors. Chem 2017, 2, 171–200.

[32]

Li, C.; Shi, G. Q. Functional gels based on chemically modified graphenes. Adv. Mater. 2014, 26, 3992–4012.

[33]

Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.

[34]

Yang, M. L.; Yuan, Y.; Li, Y.; Sun, X. X.; Wang, S. S.; Liang, L.; Ning, Y. H.; Li, J. J.; Yin, W. L.; Li, Y. B. Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 2020, 12, 33128–33138.

[35]

Raagulan, K.; Kim, B. M.; Chai, K. Y. Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 2020, 10, 702.

[36]

An, H. F.; Jiang, L.; Li, F.; Wu, P.; Zhu, X. S.; Wei, S. H.; Zhou, Y. M. Hydrogel-derived three-dimensional porous Si-CNT@G nanocomposite with high-performance lithium storage. Acta Phys. Chim. Sin. 2020, 36, 1905034.

[37]

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

[38]

Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.

[39]

Pottathara, Y. B.; Tiyyagura, H. R.; Ahmad, Z.; Sadasivuni, K. K. Graphene based aerogels: Fundamentals and applications as supercapacitors. J. Energy Storage 2020, 30, 101549.

[40]

Wang, J.; Yin, B.; Gao, T.; Wang, X. Y.; Li, W.; Hong, X. X; Wang, Z. Q.; He, H. Y. Reduced graphene oxide modified few-layer exfoliated graphite to enhance the stability of the negative electrode of a graphite-based potassium ion battery. Acta Phys. Chim. Sin. 2021, 38, 2012088.

[41]

Ma, Y. N.; Yue, Y.; Zhang, H.; Cheng, F.; Zhao, W. Q.; Rao, J. Y.; Luo, S. J.; Wang, J.; Jiang, X. L.; Liu, Z. T. et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 2018, 12, 3209–3216.

[42]

Song, J. J.; Guo, X.; Zhang, J. Q.; Chen, Y.; Zhang, C. Y.; Luo, L. Q.; Wang, F. Y.; Wang, G. X. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 6507–6513.

[43]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[44]

Yue, Y.; Liu, N. S.; Ma, Y. N.; Wang, S. L.; Liu, W. J.; Luo, C.; Zhang, H.; Cheng, F.; Rao, J. Y.; Hu, X. K. et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 2018, 12, 4224–4232.

[45]

Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.

[46]

Liu, R.; Cao, W. K.; Han, D. M.; Mo, Y. D.; Zeng, H.; Yang, H. C.; Li, W. H. Nitrogen-doped Nb2CTx MXene as anode materials for lithium ion batteries. J. Alloys Compd. 2019, 793, 505–511.

[47]

Zhang, W. Y.; Jin, H. X.; Du, Y. Q.; Chen, G. W.; Zhang, J. X. Sulfur and nitrogen codoped Nb2C MXene for dendrite-free lithium metal battery. Electrochim. Acta 2021, 390, 138812.

[48]

Fan, Z. J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L. J.; Feng, J.; Ren, Y. M.; Song, L. P.; Wei, F. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 2011, 5, 191–198.

[49]

Shao, L.; Xu, J. J.; Ma, J. Z.; Zhai, B. Y.; Li, Y.; Xu, R.; Ma, Z. L.; Zhang, G. H.; Wang, C. Y.; Qiu, J. H. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Compos. Commun. 2020, 19, 108–113.

[50]

Aunkor, M. T. H.; Mahbubul, I. M.; Saidur, R.; Metselaar, H. S. C. The green reduction of graphene oxide. RSC Adv. 2016, 6, 27807–27828.

[51]

Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

[52]

Zhang, X. Y.; Lv, R. J.; Wang, A. X.; Guo, W. Q.; Liu, X. J.; Luo, J. Y. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 15028–15033.

[53]

Mashtalir, O.; Lukatskaya, M. R.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 2015, 27, 3501–3506.

[54]

Yang, Q.; Xia, Y.; Wu, G. H.; Li, M. Z.; Wan, S. Y.; Rao, P. G.; Wang, Z. L. Uniformly depositing Sn onto MXene nanosheets for superior lithium-ion storage. J. Alloys Compd. 2021, 859, 157799.

[55]

Su, T. M.; Peng, R.; Hood, Z. D.; Naguib, M.; Ivanov, I. N.; Keum, J. K.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem 2018, 11, 688–699.

[56]

Bao, W. Z.; Tang, X.; Guo, X.; Choi, S.; Wang, C. Y.; Gogotsi, Y.; Wang, G. X. Porous cryo-dried MXene for efficient capacitive deionization. Joule 2018, 2, 778–787.

[57]

Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 3634–3643.

[58]

Xia, Z.; Chen, X. W.; Ci, H. N.; Fan, Z. D.; Yi, Y. Y.; Yin, W. J.; Wei, N.; Cai, J. S.; Zhang, Y. F.; Sun, J. Y. Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. J. Energy Chem. 2021, 53, 155–162.

[59]

Cao, J. M.; Wang, L. L.; Li, D. D.; Yuan, Z. Y.; Xu, H.; Li, J. Z.; Chen, R. Y.; Shulga, V.; Shen, G. Z.; Han, W. Ti3C2Tx MXene conductive layers supported Bio-derived Fex−1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries. Adv. Mater. 2021, 33, 2101535.

[60]

Wang, T. H.; Shen, D. Y.; Liu, H.; Chen, H. Y.; Liu, Q. H.; Lu, B. G. A Sb2S3 nanoflower/MXene composite as an anode for potassium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 57907–57915.

[61]

Cao, Y. P.; Chen, H.; Shen, Y. P.; Chen, M.; Zhang, Y. L.; Zhang, L. Y.; Wang, Q.; Guo, S. J.; Yang, H. SnS2 nanosheets anchored on nitrogen and sulfur Co-doped MXene sheets for high-performance potassium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 17668–17676.

[62]

Cao, J. M.; Li, J. Z.; Li, D. D.; Yuan, Z. Y.; Zhang, Y. M.; Shulga, V.; Sun, Z. Q.; Han, W. Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 2021, 13, 113.

[63]

Ming, F. W.; Liang, H. F.; Zhang, W. L.; Ming, J.; Lei, Y. J.; Emwas, A. H.; Alshareef, H. N. Porous MXenes enable high performance potassium ion capacitors. Nano Energy 2019, 62, 853–860.

[64]

Huang, H. W.; Cui, J.; Liu, G. X.; Bi, R.; Zhang, L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448–3456.

[65]

Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

[66]

Share, K.; Cohn, A. P.; Carter, R. E.; Pint, C. L. Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. Nanoscale 2016, 8, 16435–16439.

[67]

Li, D. P.; Sun, Q.; Zhang, Y. M.; Dai, X. Y.; Ji, F. J.; Li, K. K.; Yuan, Q. H.; Liu, X. J.; Ci, L. J. Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Res. 2021, 14, 4502–4511.

[68]

Li, G. Y.; Li, N.; Peng, S. T.; He, B.; Wang, J.; Du, Y.; Zhang, W. B.; Han, K.; Dang, F. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries. Adv. Energy Mater. 2020, 11, 2002721.

File
12274_2022_4994_MOESM1_ESM.pdf (1.2 MB)
12274_2022_4994_MOESM2_ESM.pdf (511.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 July 2022
Revised: 21 August 2022
Accepted: 31 August 2022
Published: 14 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (No. 21773116) and Modern Analysis Center of Nanjing University.

Return