Journal Home > Volume 16 , Issue 2

For the high-temperature catalytic reaction, revealing the interface of catalyst–support and its evolution under reactive conditions is of crucial importance for understanding the reaction mechanism. However, much less is known about the atomic-scale interface of the hard-to-reduce silica-metal compared to that of reducible oxide systems. Here we reported the general behaviors of SiO2 migration onto various metal (Pt, Co, Rh, Pd, Ru, and Ni) nanocrystals supported on silica. Typically, the Pt/SiO2 catalytic system, which boosted the CO2 hydrogenation to CO, exhibited the reduction of Si0 at the Pt-SiO2 interface under H2 and further Si diffusion into the near surface of Pt nanoparticles, which was unveiled by in-situ environmental transmission electron microscopy coupled with spectroscopies. This reconstructed interface with Si diffused into Pt increased the sinter resistance of catalyst and thus improved the catalytic stability. The morphology of metal nanoparticles with SiO2 overlayer were dynamically evolved under reducing, vacuum, and oxidizing atmospheres, with a thicker SiO2 layer under oxidizing condition. The theoretical calculations revealed the mechanism that the Si-Pt surface provided synergistic sites for the activation of CO2/H2 to produce CO with lower energy barriers, consequently boosting the high-temperature reverse water-gas shift reaction. These findings deepen the understanding toward the interface structure of inert oxide supported catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct environmental TEM observation of silicon diffusion-induced strong metal-silica interaction for boosting CO2 hydrogenation

Show Author's information Lei Wang§Lei Zhang§Luyao ZhangYulong YunKun WangBoyuan YuXin ZhaoFeng Yang( )
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

§ Lei Wang and Lei Zhang contributed equally to this work.

Abstract

For the high-temperature catalytic reaction, revealing the interface of catalyst–support and its evolution under reactive conditions is of crucial importance for understanding the reaction mechanism. However, much less is known about the atomic-scale interface of the hard-to-reduce silica-metal compared to that of reducible oxide systems. Here we reported the general behaviors of SiO2 migration onto various metal (Pt, Co, Rh, Pd, Ru, and Ni) nanocrystals supported on silica. Typically, the Pt/SiO2 catalytic system, which boosted the CO2 hydrogenation to CO, exhibited the reduction of Si0 at the Pt-SiO2 interface under H2 and further Si diffusion into the near surface of Pt nanoparticles, which was unveiled by in-situ environmental transmission electron microscopy coupled with spectroscopies. This reconstructed interface with Si diffused into Pt increased the sinter resistance of catalyst and thus improved the catalytic stability. The morphology of metal nanoparticles with SiO2 overlayer were dynamically evolved under reducing, vacuum, and oxidizing atmospheres, with a thicker SiO2 layer under oxidizing condition. The theoretical calculations revealed the mechanism that the Si-Pt surface provided synergistic sites for the activation of CO2/H2 to produce CO with lower energy barriers, consequently boosting the high-temperature reverse water-gas shift reaction. These findings deepen the understanding toward the interface structure of inert oxide supported catalysts.

Keywords: interface, in-situ environmental transmission electron microscopy, strong metal-support interaction, silica support, reverse water gas-shift reaction

References(70)

[1]

Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

[2]

Rong, H. P.; Ji, S. F.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020, 11, 5884.

[3]

Yao, S. Y.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W. Q.; Ye, Y. F.; Lin, L. L.; Wen, X. D.; Liu, P.; Chen, B. B. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389–393.

[4]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[5]

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

[6]

Jiang, L. Z.; Liu, K. L.; Hung, S. F.; Zhou, L. Y.; Qin, R. X.; Zhang, Q. H.; Liu, P. X.; Gu, L.; Chen, H. M.; Fu, G. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 2020, 15, 848–853.

[7]

Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633–1636.

[8]

Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.

[9]

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

[10]

Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Reversible loss of core-shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411–417.

[11]

Yang, F.; Zhao, H. F.; Wang, W.; Liu, Q. D.; Liu, X.; Hu, Y. C.; Zhang, X. R.; Zhu, S.; He, D. S.; Xu, Y. Y. et al. Carbon-involved near-surface evolution of cobalt nanocatalysts: An in situ study. CCS Chem. 2021, 3, 154–167.

[12]

Wang, L.; Yin, P.; Zeng, W. J.; Xu, S. L.; Chen, P.; Liang, H. W. Bulky nanodiamond-confined synthesis of sub-5 nanometer ordered intermetallic Pd3Pb catalysts. Nano Res. 2022, 15, 4973–4979.

[13]

Chen, L. W.; He, F. X.; Shao, R. Y.; Yan, Q. Q.; Yin, P.; Zeng, W. J.; Zuo, M.; He, L. X.; Liang, H. W. Intermetallic IrGa-IrOx core–shell electrocatalysts for oxygen evolution. Nano Res. 2022, 15, 1853–1860.

[14]

Wang, K.; Wang, L.; Yao, Z.; Zhang, L.; Zhang, L. Y.; Yang, X. S.; Li, Y. B.; Wang, Y. G.; Li, Y.; Yang, F. Kinetic diffusion-controlled synthesis of twinned intermetallic nanocrystals for CO-resistant catalysis. Sci. Adv. 2022, 8, eabo4599.

[15]

Li, M. H.; Yang, F.; Ding, L.; Liu, X. Y.; Zhang, Z. Y.; Zhang, D. Q.; Zhao, X. L.; Yang, J.; Li, Y. Diameter-specific growth of single-walled carbon nanotubes using tungsten supported nickel catalysts. Carbon 2017, 118, 485–492.

[16]

Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.

[17]

Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

[18]

Divins, N. J.; Angurell, I.; Escudero, C.; Pérez-Dieste, V.; Llorca, J. Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 2014, 346, 620–623.

[19]

Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsøe, H. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 2002, 295, 2053–2055.

[20]

He, Y.; Liu, J. C.; Luo, L. L.; Wang, Y. G.; Zhu, J. F.; Du, Y. G.; Li, J.; Mao, S. X.; Wang, C. M. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc. Natl. Acad. Sci. USA 2018, 115, 7700–7705.

[21]

Yuan, W. T.; Zhu, B. E.; Fang, K.; Li, X. Y.; Hansen, T. W.; Ou, Y.; Yang, H. S.; Wagner, J. B.; Gao, Y.; Wang, Y. et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science 2021, 371, 517–521.

[22]

Han, Z.; Yang, F.; Li, Y. Dynamics of metal-support interface revealed by environmental transmission electron microscopy. Matter 2022, 5, 2531–2533.

[23]

Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175.

[24]

Tauster, S. J. Strong metal-support interactions. Acc. Chem. Res. 1987, 20, 389–394.

[25]

Hansen, T. W.; Delariva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730.

[26]

Li, Z.; Cui, Y. R.; Wu, Z. W.; Milligan, C.; Zhou, L.; Mitchell, G.; Xu, B.; Shi, E. Z.; Miller, J. T.; Ribeiro, F. H. et al. Reactive metal-support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 2018, 1, 349–355.

[27]

Wang, L. X.; Wang, L.; Meng, X. J.; Xiao, F. S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater. 2019, 31, 1901905.

[28]

Van Deelen, T. W.; Mejía, C. H.; De Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

[29]

Parastaev, A.; Muravev, V.; Huertas Osta, E.; Van Hoof, A. J. F.; Kimpel, T. F.; Kosinov, N.; Hensen, E. J. M. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts. Nat. Catal. 2020, 3, 526–533.

[30]

Mao, X. Y.; Foucher, A. C.; Montini, T.; Stach, E. A.; Fornasiero, P.; Gorte, R. J. Epitaxial and strong support interactions between Pt and LaFeO3 films stabilize Pt dispersion. J. Am. Chem. Soc. 2020, 142, 10373–10382.

[31]

Matsubu, J. C.; Zhang, S. Y.; DeRita, L.; Marinkovic, N. S.; Chen, J. G.; Graham, G. W.; Pan, X. Q.; Christopher, P. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 2017, 9, 120–127.

[32]

Zhang, S. Y.; Plessow, P. N.; Willis, J. J.; Dai, S.; Xu, M. J.; Graham, G. W.; Cargnello, M.; Abild-Pedersen, F.; Pan, X. Q. Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett. 2016, 16, 4528–4534.

[33]

Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.

[34]

Huang, J. W.; He, S.; Goodsell, J. L.; Mulcahy, J. R.; Guo, W. X.; Angerhofer, A.; Wei, W. D. Manipulating atomic structures at the Au/TiO2 interface for O2 activation. J. Am. Chem. Soc. 2020, 142, 6456–6460.

[35]

Yuan, W. T.; Zhang, D. W.; Ou, Y.; Fang, K.; Zhu, B. E.; Yang, H. S.; Hansen, T. W.; Wagner, J. B.; Zhang, Z.; Gao, Y. et al. Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2. Angew. Chem., Int. Ed. 2018, 57, 16827–16831.

[36]

Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C. T.; Wang, L. X.; Meng, X. J.; Li, B.; Su, D. S.; Xiao, F. S. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts. J. Am. Chem. Soc. 2019, 141, 2975–2983.

[37]

Zhang, Y. R.; Su, X.; Li, L.; Qi, H. F.; Yang, C. Y.; Liu, W.; Pan, X. L.; Liu, X. Y.; Yang, X. F.; Huang, Y. Q. et al. Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in fischer-tropsch synthesis. ACS Catal. 2020, 10, 12967–12975.

[38]

Frey, H.; Beck, A.; Huang, X.; Van Bokhoven, J. A.; Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022, 376, 982–987.

[39]

Bernal, S.; Calvino, J. J.; Gatica, J. M.; Larese, C.; López-Cartes, C.; Pérez-Omil, J. A. Nanostructural evolution of a Pt/CeO2 catalyst reduced at increasing temperatures (473–1223 K): A HREM study. J. Catal. 1997, 169, 510–515.

[40]

Li, S. W.; Xu, Y.; Chen, Y. F.; Li, W. Z.; Lin, L. L.; Li, M. Z.; Deng, Y. C.; Wang, X. P.; Ge, B. H.; Yang, C. et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angew. Chem., Int. Ed. 2017, 56, 10761–10765.

[41]

Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlögl, R.; Willinger, M. G. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions. Angew. Chem., Int. Ed. 2015, 54, 4544–4548.

[42]

Liu, X. Y.; Liu, M. H.; Luo, Y. C.; Mou, C. Y.; Lin, S. D.; Cheng, H. K.; Chen, J. M.; Lee, J. F.; Lin, T. S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 2012, 134, 10251–10258.

[43]

Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.

[44]

Strayer, M. E.; Binz, J. M.; Tanase, M.; Shahri, S. M. K.; Sharma, R.; Rioux, R. M.; Mallouk, T. E. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports. J. Am. Chem. Soc. 2014, 136, 5687–5696.

[45]

Labich, S.; Kohl, A.; Taglauer, E.; Knözinger, H. Silicide formation by high-temperature reaction of Rh with model SiO2 films. J. Chem. Phys. 1998, 109, 2052–2055.

[46]

Peterson, E. J.; Delariva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.

[47]

Zhang, Y. L.; Zhang, J. Y.; Zhang, B. S.; Si, R.; Han, B.; Hong, F.; Niu, Y. M.; Sun, L.; Li, L.; Qiao, B. T. et al. Boosting the catalysis of gold by O2 activation at Au-SiO2 interface. Nat. Commun. 2020, 11, 558.

[48]

Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619.

[49]

Yang, F.; Zhao, H. F.; Wang, W.; Wang, L.; Zhang, L.; Liu, T. H.; Sheng, J.; Zhu, S.; He, D. S.; Lin, L. L. et al. Atomic origins of the strong metal-support interaction in silica supported catalysts. Chem. Sci. 2021, 12, 12651–12660.

[50]

Wang, S. H.; Feng, K.; Zhang, D. K.; Yang, D. R.; Xiao, M. Q.; Zhang, C. C.; He, L.; Yan, B. H.; Ozin, G. A.; Sun, W. Stable Cu catalysts supported by two-dimensional SiO2 with strong metal-support interaction. Adv. Sci. 2022, 9, 2104972.

[51]

He, M. S.; Jiang, H.; Liu, B. L.; Fedotov, P. V.; Chernov, A. I.; Obraztsova, E. D.; Cavalca, F.; Wagner, J. B.; Hansen, T. W.; Anoshkin, I. V. et al. Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 2013, 3, 1460.

[52]

Wang, L. X.; Guan, E. J.; Wang, Y. Q.; Wang, L.; Gong, Z. M.; Cui, Y.; Meng, X. J.; Gates, B. C.; Xiao, F. S. Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nat. Commun. 2020, 11, 1033.

[53]

Wang, D.; Penner, S.; Su, D. S.; Rupprechter, G.; Hayek, K.; Schlögl, R. Silicide formation on a Pt/SiO2 model catalyst studied by TEM, EELS, and EDXS. J. Catal. 2003, 219, 434–441.

[54]

Deng, L. D.; Miura, H.; Shishido, T.; Hosokawa, S.; Teramura, K.; Tanaka, T. Strong metal-support interaction between Pt and SiO2 following high-temperature reduction: A catalytic interface for propane dehydrogenation. Chem. Commun. 2017, 53, 6937–6940.

[55]

Fang, X. L.; Chen, C.; Liu, Z. H.; Liu, P. X.; Zheng, N. F. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 2011, 3, 1632–1639.

[56]

Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.

[57]

Takenaka, S.; Arike, T.; Matsune, H.; Tanabe, E.; Kishida, M. Preparation of carbon nanotube-supported metal nanoparticles coated with silica layers. J. Catal. 2008, 257, 345–355.

[58]

Du, X. R.; Huang, Y. K.; Pan, X. L.; Han, B.; Su, Y.; Jiang, Q. K.; Li, M. R.; Tang, H. L.; Li, G.; Qiao, B. T. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 2020, 11, 5811.

[59]

Yang, F.; Zhao, H. F.; Wang, X. W.; Liu, X.; Liu, Q. D.; Liu, X. Y.; Jin, C. H.; Wang, R. M.; Li, Y. Atomic scale stability of tungsten-cobalt intermetallic nanocrystals in reactive environment at high temperature. J. Am. Chem. Soc. 2019, 141, 5871–5879.

[60]

Zhang, L. Y.; Li, Y. Y.; Zhang, L.; Wang, K.; Li, Y. B.; Wang, L.; Zhang, X. Y.; Yang, F.; Zheng, Z. P. Direct visualization of the evolution of a single-atomic cobalt catalyst from melting nanoparticles with carbon dissolution. Adv. Sci. 2022, 9, 2200592.

[61]

Gao, L. B.; Ren, W. C.; Liu, B. L.; Wu, Z. S.; Jiang, C. B.; Cheng, H. M. Crystallographic tailoring of graphene by nonmetal SiOx nanoparticles. J. Am. Chem. Soc. 2009, 131, 13934–13936.

[62]

Luo, D.; Yang, F.; Wang, X.; Sun, H.; Gao, D. L.; Li, R. M.; Yang, J.; Li, Y. Anisotropic etching of graphite flakes with water vapor to produce armchair-edged graphene. Small 2014, 10, 2809–2814.

[63]

Wu, C. Y.; Lin, L. L.; Liu, J. J.; Zhang, J. P.; Zhang, F.; Zhou, T.; Rui, N.; Yao, S. Y.; Deng, Y. C.; Yang, F. et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nat. Commun. 2020, 11, 5767.

[64]

Xu, Y.; Zhai, P.; Deng, Y. C.; Xie, J. L.; Liu, X.; Wang, S.; Ma, D. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives. Angew. Chem., Int. Ed. 2020, 59, 21736–21744.

[65]

Galhardo, T. S.; Braga, A. H.; Arpini, B. H.; Szanyi, J.; Gonçalves, R. V.; Zornio, B. F.; Miranda, C. R.; Rossi, L. M. Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts. J. Am. Chem. Soc. 2021, 143, 4268–4280.

[66]

Lin, L. L.; Liu, J. J.; Liu, X.; Gao, Z. R.; Rui, N.; Yao, S. Y.; Zhang, F.; Wang, M. L.; Liu, C.; Han, L. L. et al. Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction. Nat. Commun. 2021, 12, 6978.

[67]

Shen, H. D.; Dong, Y. J.; Yang, S. W.; He, Y.; Wang, Q. M.; Cao, Y. L.; Wang, W. B.; Wang, T. S.; Zhang, Q. Y.; Zhang, H. P. Identifying the roles of Ce3+-OH and Ce-H in the reverse water-gas shift reaction over highly active Ni-doped CeO2 catalyst. Nano Res. 2022, 15, 5831–5841.

[68]

Chen, X. D.; Su, X.; Su, H. Y.; Liu, X. Y.; Miao, S.; Zhao, Y. H.; Sun, K. J.; Huang, Y. Q.; Zhang, T. Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2 to CO conversion. ACS Catal. 2017, 7, 4613–4620.

[69]

Li, T. B.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J. Y.; Huang, J. H.; Sun, H.; Haruta, M. et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew. Chem., Int. Ed. 2018, 57, 7795–7799.

[70]

Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.

Video
12274_2022_4991_MOESM2_ESM.avi
File
12274_2022_4991_MOESM1_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2022
Revised: 07 August 2022
Accepted: 30 August 2022
Published: 12 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China revise to (Nos. 22222504, 92161124, and 52002165), the National Key Research and Development Program of China (No. 2021YFA0717400), the Beijing National Laboratory for Molecular Sciences (No. BNLMS202013), the Guangdong Provincial Natural Science Foundation (No. 2021A1515010229), the Shenzhen Basic Research Project (No. JCYJ20210324104808022), and the Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002). L. W. acknowledges the China Postdoctoral Science Foundation (No. 2020M682764). We gratefully acknowledge the Core Research Facilities of Southern University of Science and Technology for characterizations.

Return