Journal Home > Volume 16 , Issue 2

The generalized Kerker effects have attracted increasing interests in recent years due to their abilities to manipulate the far-field properties of metasurfaces. However, the dual-polarized generalized Kerker effect enabling different tailoring of orthogonally-polarized electromagnetic waves has not yet been reported. Herein, we demonstrate polarization-controlled dual resonant lattice Kerker effects in periodic silicon nanodisks. By varying the incident angle, the electric dipole and magnetic dipole surface lattice resonances can spectrally overlap, causing zero reflectance and unitary transmittance, i.e., the resonant lattice Kerker effect. The incident angle for achieving this effect can be tuned differently for s- and p-polarizations over large regions by varying the nanodisk size or the lattice periods. The proposed dual-polarized resonant lattice Kerker effects open up avenues for polarization-controlled manipulation of the phase and wavefront of light with metasurfaces.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polarization-controlled dual resonant lattice Kerker effects

Show Author's information Lei Xiong1,2,§Xueqian Zhao2,3,§Xiang Du2,4,§Shuai Chen5Yuanfu Lu2Hongwei Ding1( )Guangyuan Li2,6( )
School of Information Science and Engineering, Yunnan University, Kunming 650500, China
CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
School of Computer, Electronic and Information, Guangxi University, Nanning 530004, China
College of Physics and Electronic Technology, Anhui Normal University, Wuhu 241000, China
Tianjin H-Chip Technology Group Corporation, Tianjin 300467, China
SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China

§ Lei Xiong, Xueqian Zhao, and Xiang Du contributed equally to this work.

Abstract

The generalized Kerker effects have attracted increasing interests in recent years due to their abilities to manipulate the far-field properties of metasurfaces. However, the dual-polarized generalized Kerker effect enabling different tailoring of orthogonally-polarized electromagnetic waves has not yet been reported. Herein, we demonstrate polarization-controlled dual resonant lattice Kerker effects in periodic silicon nanodisks. By varying the incident angle, the electric dipole and magnetic dipole surface lattice resonances can spectrally overlap, causing zero reflectance and unitary transmittance, i.e., the resonant lattice Kerker effect. The incident angle for achieving this effect can be tuned differently for s- and p-polarizations over large regions by varying the nanodisk size or the lattice periods. The proposed dual-polarized resonant lattice Kerker effects open up avenues for polarization-controlled manipulation of the phase and wavefront of light with metasurfaces.

Keywords: surface lattice resonances, Kerker effect, dual-polarized, silicon metasurface

References(50)

[1]

Kerker, M.; Wang, D. S.; Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 1983, 73, 765–767.

[2]

Liu, W.; Kivshar, Y. S. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt. Express 2018, 26, 13085–13105.

[3]

Fu, Y. H.; Kuznetsov, A. I.; Miroshnichenko, A. E.; Yu, Y. F.; Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 2013, 4, 1527.

[4]

Staude, I.; Miroshnichenko, A. E.; Decker, M.; Fofang, N. T.; Liu, S.; Gonzales, E.; Dominguez, J.; Luk, T. S.; Neshev, D. N.; Brener, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013, 7, 7824–7832.

[5]

Alaee, R.; Filter, R.; Lehr, D.; Lederer, F.; Rockstuhl, C. A generalized Kerker condition for highly directive nanoantennas. Opt. Lett. 2015, 40, 2645–2648.

[6]

Pors, A.; Andersen, S. K. H.; Bozhevolnyi, S. I. Unidirectional scattering by nanoparticles near substrates: Generalized Kerker conditions. Opt. Express 2015, 23, 28808–28828.

[7]

Kostyukov, A. S.; Ershov, A. E.; Bikbaev, R. G.; Gerasimov, V. S.; Rasskazov, I. L.; Karpov, S. V.; Polyutov, S. P. Substrate-mediated lattice Kerker effect in Al metasurfaces. J. Opt. Soc. Am. B 2021, 38, C78–C83.

[8]

Babicheva, V. E.; Petrov, M. I.; Baryshnikova, K. V.; Belov, P. A. Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces [Invited]. J. Opt. Soc. Am. B 2017, 34, D18–D28.

[9]

Lee, J. Y.; Miroshnichenko, A. E.; Lee, R. K. Simultaneously nearly zero forward and nearly zero backward scattering objects. Opt. Express 2018, 26, 30393–30399.

[10]

Zhang, J. H.; Wei, R.; Guo, C. L. Simultaneous implementation of antireflection and antitransmission through multipolar interference in plasmonic metasurfaces and applications in optical absorbers and broadband polarizers. Nanophotonics 2020, 9, 4529–4538.

[11]

Decker, M.; Staude, I.; Falkner, M.; Dominguez, J.; Neshev, D. N.; Brener, I.; Pertsch, T.; Kivshar, Y. S. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 2015, 3, 813–820.

[12]

Yu, Y. F.; Zhu, A. Y.; Paniagua-Domínguez, R.; Fu, Y. H.; Luk’yanchuk, B.; Kuznetsov, A. I. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 2015, 9, 412–418.

[13]

Paniagua-Domínguez, R.; Yu, Y. F.; Miroshnichenko, A. E.; Krivitsky, L. A.; Fu, Y. H.; Valuckas, V.; Gonzaga, L.; Toh, Y. T.; Kay, A. Y. S.; Luk’yanchuk, B. et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 2016, 7, 10362.

[14]

Abujetas, D. R.; Sánchez-Gil, J. A.; Sáenz, J. J. Generalized Brewster effect in high-refractive-index nanorod-based metasurfaces. Opt. Express 2018, 26, 31523–31541.

[15]

Kruk, S.; Hopkins, B.; Kravchenko, I. I.; Miroshnichenko, A.; Neshev, D. N.; Kivshar, Y. S. Invited article: Broadband highly efficient dielectric metadevices for polarization control. APL Photonics 2016, 1, 030801.

[16]

Liu, M. Q.; Zhao, C. Y.; Wang, B. X. Polarization management based on dipolar interferences and lattice couplings. Opt. Express 2018, 26, 7235–7252.

[17]

Sun, Z. W.; Sima, B. Y.; Zhao, J. M.; Feng, Y. J. Electromagnetic polarization conversion based on Huygens’ metasurfaces with coupled electric and magnetic resonances. Opt. Express 2019, 27, 11006–11017.

[18]

Zhou, Z. X.; Ye, M. J.; Yu, M. W.; Yang, J. H.; Su, K. L.; Yang, C. C.; Lin, C. Y.; Babicheva, V. E.; Timofeev, I. V.; Chen, K. P. Germanium metasurfaces with Lattice Kerker effect in near-infrared photodetectors. ACS Nano 2022, 16, 5994–6001.

[19]

Iyer, P. P.; Butakov, N. A.; Schuller, J. A. Reconfigurable semiconductor phased-array metasurfaces. ACS Photonics 2015, 2, 1077–1084.

[20]

Lepeshov, S.; Krasnok, A.; Alù, A. Nonscattering-to-superscattering switch with phase-change materials. ACS Photonics 2019, 6, 2126–2132.

[21]

Leitis, A.; Heßler, A.; Wahl, S.; Wuttig, M.; Taubner, T.; Tittl, A.; Altug, H. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 2020, 30, 1910259.

[22]

Howes, A.; Wang, W. Y.; Kravchenko, I.; Valentine, J. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 2018, 5, 787–792.

[23]

Babicheva, V. E.; Evlyukhin, A. B. Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical Responses. Laser Photonics Rev. 2017, 11, 1700132.

[24]

Babicheva, V. E.; Moloney, J. V. Lattice effect influence on the electric and magnetic dipole resonance overlap in a disk array. Nanophotonics 2018, 7, 1663–1668.

[25]

Babicheva, V. E.; Evlyukhin, A. B. Multipole lattice effects in high refractive index metasurfaces. J. Appl. Phys. 2021, 129, 040902.

[26]

Babicheva, V. E.; Evlyukhin, A. B. Resonant suppression of light transmission in high-refractive-index nanoparticle metasurfaces. Opt. Lett. 2018, 43, 5186–5189.

[27]

Li, J. Q.; Verellen, N.; Van Dorpe, P. Engineering electric and magnetic dipole coupling in arrays of dielectric nanoparticles. J. Appl. Phys. 2018, 123, 083101.

[28]

Evlyukhin, A. B.; Matiushechkina, M.; Zenin, V. A.; Heurs, M.; Chichkov, B. N. Lightweight metasurface mirror of silicon nanospheres [Invited]. Opt. Mater. Express 2020, 10, 2706–2716.

[29]

Gerasimov, V. S.; Ershov, A. E.; Bikbaev, R. G.; Rasskazov, I. L.; Isaev, I. L.; Semina, P. N.; Kostyukov, A. S.; Zakomirnyi, V. I.; Polyutov, S. P.; Karpov, S. V. Plasmonic lattice Kerker effect in ultraviolet-visible spectral range. Phys. Rev. B 2021, 103, 035402.

[30]

Bourgeois, M. R.; Rossi, A. W.; Chalifour, M.; Cherqui, C.; Masiello, D. J. Lattice Kerker effect with plasmonic oligomers. J. Phys. Chem. C 2021, 125, 18817–18826.

[31]

Xiong, L.; Ding, H. W.; Lu, Y. F.; Li, G. Y. Active tuning of resonant lattice Kerker effect. J. Phys. D:Appl. Phys. 2022, 55, 185106.

[32]

Babicheva, V. E. Lattice effect in Mie-resonant dielectric nanoparticle array under oblique light incidence. MRS Commun. 2018, 8, 1455–1462.

[33]

Utyushev, A. D.; Zakomirnyi, V. I.; Ershov, A. E.; Gerasimov, V. S.; Karpov, S. V.; Rasskazov, I. L. Collective lattice resonances in all-dielectric nanostructures under oblique incidence. Photonics 2020, 7, 24.

[34]

Hesari-Shermeh, M.; Abbasi-Arand, B.; Yazdi, M. Generalized Kerker’s conditions under normal and oblique incidence using the polarizability tensors of nanoparticles. Opt. Express 2021, 29, 647–662.

[35]

Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D. Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I. Angle-selective all-dielectric Huygens’ metasurfaces. J. Phys. D:Appl. Phys. 2017, 50, 434002.

[36]

Liu, L. B.; Zhang, F. F.; Murai, S.; Tanaka, K. Loss control with annealing and lattice Kerker effect in silicon metasurfaces. Adv. Photonics Res. 2022, 3, 2100235.

[37]

Xiong, L.; Luo, X. Q.; Ding, H. W.; Lu, Y. F.; Li, G. Y. Polarization-independent resonant lattice Kerker effect in phase-change metasurface. J. Phys. D:Appl. Phys. 2022, 55, 395107.

[38]

Cong, L. Q.; Singh, R. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater. 2019, 7, 1900383.

[39]

Xue, C. H.; Sun, J. W.; Niu, L.; Lou, Q. Ultrathin dual-polarized Huygens’ metasurface: Design and application. Ann. Phys. 2020, 532, 2000151.

[40]

Zhang, X. G.; Yu, Q.; Jiang, W. X.; Sun, Y. L.; Bai, L.; Wang, Q.; Qiu, C. W.; Cui, T. J. Polarization-controlled dual-programmable metasurfaces. Adv. Sci. 2020, 7, 1903382.

[41]

Ignatyeva, D. O.; Karki, D.; Voronov, A. A.; Kozhaev, M. A.; Krichevsky, D. M.; Chernov, A. I.; Levy, M.; Belotelov, V. I. All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances. Nat. Commun. 2020, 11, 5487.

[42]

Guan, C. S.; Liu, J.; Ding, X. M.; Wang, Z. C.; Zhang, K.; Li, H. Y.; Jin, M.; Burokur, S. N.; Wu, Q. Dual-polarized multiplexed meta-holograms utilizing coding metasurface. Nanophotonics 2020, 9, 3605–3613.

[43]

Liu, J. Y.; Duan, Y. P.; Zhang, T.; Huang, L. X.; Pang, H. F. Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system. Nano Res. 2022, 15, 7498–7505.

[44]

Zhou, W.; Hua, Y.; Huntington, M. D.; Odom, T. W. Delocalized lattice plasmon resonances show dispersive quality factors. J. Phys. Chem. Lett. 2012, 3, 1381–1385.

[45]

Khlopin, D.; Laux, F.; Wardley, W. P.; Martin, J.; Wurtz, G. A.; Plain, J.; Bonod, N.; Zayats, A. V.; Dickson, W.; Gérard, D. Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays. J. Opt. Soc. Am. B 2017, 34, 691–700.

[46]

Castellanos, G. W.; Bai, P.; Rivas, J. G. Lattice resonances in dielectric metasurfaces. J. Appl. Phys. 2019, 125, 213105.

[47]

Xiong, L.; Ding, H. W.; Lu, Y. F.; Li, G. Y. Extremely narrow and actively tunable Mie surface lattice resonances in GeSbTe metasurfaces: Study. Nanomaterials 2022, 12, 701.

[48]

Terekhov, P. D.; Babicheva, V. E.; Baryshnikova, K. V.; Shalin, A. S.; Karabchevsky, A.; Evlyukhin, A. B. Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys. Rev. B 2019, 99, 045424.

[49]

Zhang, X.; Bradley, A. L. Wide-angle invisible dielectric metasurface driven by transverse Kerker scattering. Phys. Rev. B 2021, 103, 195419.

[50]
Palik, E. D. Handbook of Optical Constants of Solids; Academic: New York, 1985.
File
12274_2022_4988_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2022
Revised: 25 August 2022
Accepted: 29 August 2022
Published: 08 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Natural Science Foundation of Guangdong Province (No. 2022A1515010086), the Shenzhen Research Foundation (No. JCYJ20180507182444250), the Shenzhen Institute of Artificial Intelligence and Robotics for Society, and the State Key Laboratory of Advanced Optical Communication Systems and Networks, China (No. 2020GZKF004).

Return