Journal Home > Volume 16 , Issue 2

Large-scale use of detergents to remove oil-fouling in industry continuously generates tremendous amounts of wastewater and thus leads to both economic and environmental problems. To develop recyclable oil-fouling removal strategy is an appealing solution but a challenging task. Herein, a kind of dynamic imine-based surfactant has been constructed by 2-formylbenzenesulfonic acid sodium salt (FBSS) and linear amines (CnNH2, n = 6, 7, 8, 10, and 12). Owing to high interfacial activity and strong assembly ability, dynamic FBSS/C8NH2 system can remove oil-fouling on multiple substrates for at least 10 cycles, largely reducing the toxicity to ecosystem. At basic pH, the hierarchical assemblies (from vesicle to network and hollow sphere) are formed and boost surfactant molecule enrichment around oil-fouling, leading to highly efficient emulsification. When pH is changed to acidic condition, the surfactant molecules dissociate due to the breaking of imine bonds, and accordingly the emulsion is destroyed and the released oil droplets float to the top layer. After removing the oil-fouling and adjusting the solution back to basic pH, the surfactant assemblies are reconstructed and used for the next oil-fouling cleaning cycle. This study provides a recyclable, efficient and eco-friendly oil-fouling removal approach, satisfying the need of sustainable development.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Detachable and hierarchical assemblies for recyclable and highly efficient oil-fouling removal

Show Author's information Tengda Wang1,2Shaoying Dai1,2Jie Wang1,2Bin Liu1,2Meiwen Cao3Bo Guan1Yuchun Han1( )Yilin Wang1,2( )
CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Large-scale use of detergents to remove oil-fouling in industry continuously generates tremendous amounts of wastewater and thus leads to both economic and environmental problems. To develop recyclable oil-fouling removal strategy is an appealing solution but a challenging task. Herein, a kind of dynamic imine-based surfactant has been constructed by 2-formylbenzenesulfonic acid sodium salt (FBSS) and linear amines (CnNH2, n = 6, 7, 8, 10, and 12). Owing to high interfacial activity and strong assembly ability, dynamic FBSS/C8NH2 system can remove oil-fouling on multiple substrates for at least 10 cycles, largely reducing the toxicity to ecosystem. At basic pH, the hierarchical assemblies (from vesicle to network and hollow sphere) are formed and boost surfactant molecule enrichment around oil-fouling, leading to highly efficient emulsification. When pH is changed to acidic condition, the surfactant molecules dissociate due to the breaking of imine bonds, and accordingly the emulsion is destroyed and the released oil droplets float to the top layer. After removing the oil-fouling and adjusting the solution back to basic pH, the surfactant assemblies are reconstructed and used for the next oil-fouling cleaning cycle. This study provides a recyclable, efficient and eco-friendly oil-fouling removal approach, satisfying the need of sustainable development.

Keywords: dynamic covalent bond, hierarchical assembly, emulsion, oil-fouling removal, oil/water separation

References(59)

[1]

Sirisattha, S.; Momose, Y.; Kitagawa, E.; Iwahashi, H. Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis. Water Res. 2004, 38, 61–70.

[2]

Valdez, A. L.; Casavant, M. J.; Spiller, H. A.; Chounthirath, T.; Xiang, H. Y.; Smith, G. A. Pediatric exposure to laundry detergent pods. Pediatrics 2014, 134, 1127–1135.

[3]

Cherukupally, P.; Sun, W.; Wong, A. P. Y.; Williams, D. R.; Ozin, G. A.; Bilton, A. M.; Park, C. B. Surface-engineered sponges for recovery of crude oil microdroplets from wastewater. Nat. Sustain. 2020, 3, 136–143.

[4]
MarketsandMarkets. Industrial cleaning market by ingredient type (surfactant, solvent, chelating agent), product type (general and metal cleaners), application (manufacturing & commercial offices, healthcare, retail & foodservice), Region-global forecast to 2024 [Online]. 2020. https://www.marketresearch.com/MarketsandMarkets-v3719/Industrial-Cleaning-Ingredient-Type-Surfactant-12737132/ (accessed Oct, 2019).
[5]

Menger, F. M.; Littau, C. A. Gemini surfactants: A new class of self-assembling molecules. J. Am. Chem. Soc. 1993, 115, 10083–10090.

[6]

Zana, R. Gemini (dimeric) surfactants. Curr. Opin. Colloid Interface Sci. 1996, 1, 566–571.

[7]

Menger, F. M.; Keiper, J. S. Gemini surfactants. Angew. Chem., Int. Ed. 2000, 39, 1906–1920.

DOI
[8]

Han, Y. C.; Wang, Y. L. Aggregation behavior of Gemini surfactants and their interaction with macromolecules in aqueous solution. Phys. Chem. Chem. Phys. 2011, 13, 1939–1956.

[9]

Chen, Z. D.; Fan, Y. X.; Chen, Y.; Penfold, J.; Li, P. X.; Wu, R. L.; Wang, Y. L. Pearling and helical nanostructures of model protocell membranes. Nano Res. 2022, 15, 659–668.

[10]

Han, Y. C.; Fan, Y. X.; Wu, C. X.; Hou, Y. B.; Wang, Y. L. Synthesis and aggregation behavior of oligomeric surfactants. Sci. Sin. Chim. 2015, 45, 327–339.

[11]

Fan, Y. X.; Wang, Y. L. Self-assembly and functions of star-shaped oligomeric surfactants. Langmuir 2018, 34, 11220–11241.

[12]

Liu, S. Y.; Armes, S. P. Polymeric surfactants for the new millennium: A pH-responsive, zwitterionic, schizophrenic diblock copolymer. Angew. Chem., Int. Ed. 2002, 41, 1413–1416.

DOI
[13]

Tadros, T. Polymeric surfactants in disperse systems. Adv. Colloid Interface Sci. 2009, 147, 281–299.

[14]

Raffa, P.; Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A. Polymeric surfactants: Synthesis, properties, and links to applications. Chem. Rev. 2015, 115, 8504–8563.

[15]

Morán, M. C.; Pinazo, A.; Pérez, L.; Clapés, P.; Angelet, M.; García, M. T.; Vinardell, M. P.; Infante, M. R. “Green” amino acid-based surfactants. Green Chem. 2004, 6, 233–240.

[16]

Sakai, K.; Ohno, K.; Nomura, K.; Endo, T.; Sakamoto, K.; Sakai, H.; Abe, M. α-gel formation by amino acid-based gemini surfactants. Langmuir 2014, 30, 7654–7659.

[17]

Manyala, D. L.; Varade, D. Formation and characterization of microemulsion with novel anionic sodium N-lauroylsarcosinate for personal care. J. Mol. Liq. 2021, 343, 117657.

[18]

Von Rybinski, W. Alkyl glycosides and polyglycosides. Curr. Opin. Colloid Interface Sci. 1996, 1, 587–597.

[19]

Van Dyke, M. I.; Lee, H.; Trevors, J. T. Applications of microbial surfactants. Biotechnol. Adv. 1991, 9, 241–252.

[20]

Mitidieri, S.; Martinelli, A. H. S.; Schrank, A.; Vainstein, M. H. Enzymatic detergent formulation containing amylase from Aspergillus niger: A comparative study with commercial detergent formulations. Bioresour. Technol. 2006, 97, 1217–1224.

[21]

Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem., Int. Ed. 2002, 41, 898–952.

DOI
[22]

Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J. L.; Sanders, J. K. M.; Otto, S. Dynamic combinatorial chemistry. Chem. Rev. 2006, 106, 3652–3711.

[23]

Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 2009, 34, 581–604.

[24]

Jin, Y. H.; Yu, C.; Denman, R. J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654.

[25]

Herrmann, A. Dynamic combinatorial/covalent chemistry: A tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem. Soc. Rev. 2014, 43, 1899–1933.

[26]

Wilson, A.; Gasparini, G.; Matile, S. Functional systems with orthogonal dynamic covalent bonds. Chem. Soc. Rev. 2014, 43, 1948–1962.

[27]

Guo, W. H.; Qi, X. L.; Yu, X.; Liu, Y.; Chung, C. I.; Bai, F.; Lin, X. C.; Lu, D.; Wang, L. F.; Chen, J. W. et al. Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry. Nat. Commun. 2020, 11, 4268.

[28]

Webber, M. J.; Tibbitt, M. W. Dynamic and reconfigurable materials from reversible network interactions. Nat. Rev. Mater. 2022, 7, 541–556.

[29]

Jiang, W.; Zhou, H.; Wang, Q.; Chen, Z. Q.; Dong, W.; Guo, Z. X.; Li, Y.; Zhao, W.; Zhan, M. X.; Wang, Y. C. et al. High drug loading and pH-responsive nanomedicines driven by dynamic boronate covalent chemistry for potent cancer immunotherapy. Nano Res. 2021, 14, 3913–3920.

[30]

Zou, Z. N.; Zhu, C. P.; Li, Y.; Lei, X. F.; Zhang, W.; Xiao, J. L. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 2018, 4, eaaq0508.

[31]

Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem., Int. Ed. 2019, 58, 9682–9695.

[32]

Van Tron, T.; Mredha, M. T. I.; Na, J. Y.; Seon, J. K.; Cui, J. X.; Jeon, I. Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability. Chem. Eng. J. 2020, 394, 124941.

[33]

Wensien, M.; Von Pappenheim, F. R.; Funk, L. M.; Kloskowski, P.; Curth, U.; Diederichsen, U.; Uranga, J.; Ye, J.; Fang, P.; Pan, K. T. et al. A lysine-cysteine redox switch with an NOS bridge regulates enzyme function. Nature 2021, 593, 460–464.

[34]

Rahman, M. A.; Bowland, C.; Ge, S. R.; Acharya, S. R.; Kim, S.; Cooper, V. R.; Chen, X. C.; Irle, S.; Sokolov, A. P.; Savara, A. et al. Design of tough adhesive from commodity thermoplastics through dynamic crosslinking. Sci. Adv. 2021, 7, eabk2451.

[35]

Schröder, H. V.; Zhang, Y.; Link, A. J. Dynamic covalent self-assembly of mechanically interlocked molecules solely made from peptides. Nat. Chem. 2021, 13, 850–857.

[36]

Wang, L. Y.; Dai, C. L.; Fang, Y. F.; You, X. R.; Wu, J. A drug/carrier dual redox-responsive system based on 6-mercaptopurine dimer-loaded cysteine polymer nanoparticles for enhanced lymphoma therapy. Nano Res. 2022, 15, 4544–4551.

[37]

Belowich, M. E.; Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev. 2012, 41, 2003–2024.

[38]

Minkenberg, C. B.; Florusse, L.; Eelkema, R.; Koper, G. J. M.; Van Esch, J. H. Triggered self-assembly of simple dynamic covalent surfactants. J. Am. Chem. Soc. 2009, 131, 11274–11275.

[39]

Minkenberg, C. B.; Homan, B.; Boekhoven, J.; Norder, B.; Koper, G. J. M.; Eelkema, R.; Van Esch, J. H. Responsive wormlike micelles from dynamic covalent surfactants. Langmuir 2012, 28, 13570–13576.

[40]

Minkenberg, C. B.; Li, F.; Van Rijn, P.; Florusse, L.; Boekhoven, J.; Stuart, M. C. A.; Koper, G. J. M.; Eelkema, R.; Van Esch, J. H. Responsive vesicles from dynamic covalent surfactants. Angew. Chem., Int. Ed. 2011, 50, 3421–3424.

[41]

Minkenberg, C. B.; Hendriksen, W. E.; Li, F.; Mendes, E.; Eelkema, R.; Van Esch, J. H. Dynamic covalent assembly of stimuli responsive vesicle gels. Chem. Commun. 2012, 48, 9837–9839.

[42]

Seoane, A.; Brea, R. J.; Fuertes, A.; Podolsky, K. A.; Devaraj, N. K. Biomimetic generation and remodeling of phospholipid membranes by dynamic imine chemistry. J. Am. Chem. Soc. 2018, 140, 8388–8391.

[43]
Ren, G. H.; Wang, L.; Chen, Q. Q.; Xu, Z. H.; Xu, J.; Sun, D. J. pH switchable emulsions based on dynamic covalent surfactants. Langmuir 2017, 33, 3040–3046.
[44]

Zentner, C. A.; Anson, F.; Thayumanavan, S.; Swager, T. M. Dynamic imine chemistry at complex double emulsion interfaces. J. Am. Chem. Soc. 2019, 141, 18048–18055.

[45]

Zhao, W. W.; Wang, H.; Wang, Y. L. Coacervation of dynamic covalent surfactants with polyacrylamides: Properties and applications. Soft Matter 2018, 14, 4178–4184.

[46]

Liu, B.; Zhao, W. W.; Shen, Y. T.; Fan, Y. X.; Wang, Y. L. Trimeric cationic surfactant coacervation as a versatile approach for removing organic pollutants. Langmuir 2021, 37, 5993–6001.

[47]

Liu, B.; Fan, Y. X.; Li, H. F.; Zhao, W. W.; Luo, S. Q.; Wang, H.; Guan, B.; Li, Q. L.; Yue, J. L.; Dong, Z. C. et al. Control the entire journey of pesticide application on superhydrophobic plant surface by dynamic covalent trimeric surfactant coacervation. Adv. Funct. Mater. 2021, 31, 2006606.

[48]

Tchakalova, V.; Lutz, E.; Lamboley, S.; Moulin, E.; Benczédi, D.; Giuseppone, N.; Herrmann, A. Design of stimuli-responsive dynamic covalent delivery systems for volatile compounds (Part 2): Fragrance-releasing cleavable surfactants in functional perfumery applications. Chem. -Eur. J. 2021, 27, 13468–13476.

[49]

Chen, H. L.; Zhao, R. N.; Hu, J. J.; Wei, Z. X.; McClements, D. J.; Liu, S. L.; Li, B.; Li, Y. One-step dynamic imine chemistry for preparation of chitosan-stabilized emulsions using a natural aldehyde: Acid trigger mechanism and regulation and gastric delivery. J. Agric. Food. Chem. 2020, 68, 5412–5425.

[50]

Koshani, R.; Tavakolian, M.; Van De Ven, T. G. M. Natural emulgel from dialdehyde cellulose for lipophilic drug delivery. ACS Sustainable Chem. Eng. 2021, 9, 4487–4497.

[51]

Zeng, X. W.; Liu, G.; Tao, W.; Ma, Y.; Zhang, X. D.; He, F.; Pan, J. M.; Mei, L.; Pan, G. Q. A drug-self-gated mesoporous antitumor nanoplatform based on pH-Sensitive dynamic covalent bond. Adv. Funct. Mater. 2017, 27, 1605985.

[52]

Song, C. F.; Li, Y. G.; Li, T. L.; Yang, Y. M.; Huang, Z. C.; De La Fuente, J. M.; Ni, J.; Cui, D. X. Long-circulating drug-dye-based micelles with ultrahigh pH-sensitivity for deep tumor penetration and superior chemo-photothermal therapy. Adv. Funct. Mater. 2020, 30, 1906309.

[53]

Godoy-Alcántar, C.; Yatsimirsky, A. K.; Lehn, J. M. Structure–stability correlations for imine formation in aqueous solution. J. Phys. Org. Chem. 2005, 18, 979–985.

[54]
OECD. OECD Guidelines for the testing of chemicals, section 2, test No. 203: Fish, acute toxicity test [Online]. 2019. https://www.oecd-ilibrary.org/environment/test-no-203-fish-acute-toxicity-test_9789264069961-en (accessed Jun 18, 2019).
[55]

Stuart, M. C. A.; Van De Pas, J. C.; Engberts, J. B. F. N. The use of Nile Red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems. J. Phys. Org. Chem. 2005, 18, 929–934.

[56]

Liu, B.; Li, T.; Wang, W. Y.; Sagis, L. M. C.; Yuan, Q. P.; Lei, X. G.; Stuart, M. A. C.; Li, D.; Bao, C.; Bai, J. et al. Corncob cellulose nanosphere as an eco-friendly detergent. Nat. Sustain. 2020, 3, 448–458.

[57]

Sobrino-Figueroa, A. Toxic effect of commercial detergents on organisms from different trophic levels. Environ. Sci. Pollut. Res. 2018, 25, 13283–13291.

[58]

Han, J. H.; Jung, S. K. Toxicity evaluation of household detergents and surfactants using zebrafish. Biotechnol. Bioproc. E. 2021, 26, 156–164.

[59]

Baskaran, S. M.; Zakaria, M. R.; Sabri, A. S. M. A.; Mohamed, M. S.; Wasoh, H.; Toshinari, M.; Hassan, M. A.; Banat, I. M. Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6. Environ. Pollut. 2021, 276, 116742.

File
12274_2022_4986_MOESM1_ESM.pdf (888.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2022
Revised: 09 August 2022
Accepted: 29 August 2022
Published: 07 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was financially supported from the National Natural Science Foundation of China (Nos. 21988102, 22072161, and 21773261) and the Ministry of Science and Technology of the People’s Republic of China (No. 2021YFA0716700). We are thankful to Lirong Liang, Wenbo Chang and Kaiang Liu at the Center for Analysis and Testing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), for their support in Cryo-TEM and Cryo-SEM experiments.

Return