Journal Home > Volume 16 , Issue 2

The change in the coordination environment of the active sites of a fuel cell cathode catalyst provides a new modulation strategy for stimulating the catalyst’s oxygen reduction reaction activity. The thermodynamic and electronic properties of the FeCoN5A and FeCoN6A catalyst structures with nonmetallic A-doped (A = B, N, O, P, and S) coordination were calculated and analyzed based on density functional theory. The modulation order of G*OH by different A-doped FeCo bimetal pairs (BMPs) was as follows: S > P > O > N/C > B. There was a dynamic distribution of charges in the coordination environment during the adsorption of OH, which resulted in inversely proportional relationship with the charge transfer between the adsorbate OH, active site, first coordination layer, and second coordination layer in turn. Descriptors of the orbital energy levels of neighboring nonmetal atoms were constructed based on the p-electron number and electronegativity of the doped nonmetal A. The change of the orbital energy levels of the first coordination atom during the adsorption process caused the structure to exhibit different adsorption energies. This study provides new insights on the non-metallic modulation of the M-N-C coordination environment to improve the oxygen reduction reaction activity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dynamics of non-metal-regulated FeCo bimetal microenvironment on oxygen reduction reaction activity and intrinsic mechanism

Show Author's information Hong Cui1,2,§( )Tong Liu1,2,§( )Yunjian Chen1,2Pengyue Shan1,2Qi Jiang1,2Xue Bai1,2Yazhou Wang1,2Zhiyong Liang1,2Rong Feng1,2Qin Kang1,2Hongkuan Yuan3
School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong 723001, China
School of Physical Science and Technology, Southwest University, Chongqing 400715, China

§ Hong Cui and Tong Liu contributed equally to this work.

Abstract

The change in the coordination environment of the active sites of a fuel cell cathode catalyst provides a new modulation strategy for stimulating the catalyst’s oxygen reduction reaction activity. The thermodynamic and electronic properties of the FeCoN5A and FeCoN6A catalyst structures with nonmetallic A-doped (A = B, N, O, P, and S) coordination were calculated and analyzed based on density functional theory. The modulation order of G*OH by different A-doped FeCo bimetal pairs (BMPs) was as follows: S > P > O > N/C > B. There was a dynamic distribution of charges in the coordination environment during the adsorption of OH, which resulted in inversely proportional relationship with the charge transfer between the adsorbate OH, active site, first coordination layer, and second coordination layer in turn. Descriptors of the orbital energy levels of neighboring nonmetal atoms were constructed based on the p-electron number and electronegativity of the doped nonmetal A. The change of the orbital energy levels of the first coordination atom during the adsorption process caused the structure to exhibit different adsorption energies. This study provides new insights on the non-metallic modulation of the M-N-C coordination environment to improve the oxygen reduction reaction activity.

Keywords: charge transfer, coordination environment, dynamic distribution of charges, orbital energy levels

References(51)

[1]

Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 2004, 104, 4587–4612.

[2]

Xue, L. F.; Li, Y. C.; Liu, X. F.; Liu, Q. T.; Shang, J. X.; Duan, H. P.; Dai, L. M.; Shui, J. L. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 2018, 9, 3819.

[3]

Chu, S. J.; Chen, W.; Chen, G. L.; Huang, J.; Zhang, R.; Song, C. S.; Wang, X. Q.; Li, C. R.; Ostrikov, K. Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. Appl. Catal. B: Environ. 2019, 243, 537–545.

[4]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[5]

Wang, Q.; Shang, L.; Sun-Waterhouse, D.; Zhang, T. R.; Waterhouse, G. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis. SmartMat 2021, 2, 154–175.

[6]

Zhang, G. X.; Jia, Y.; Zhang, C.; Xiong, X. Y.; Sun, K.; Chen, R. D.; Chen, W. X.; Kuang, Y.; Zheng, L. R.; Tang, H. L. et al. A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energy Environ. Sci. 2019, 12, 1317–1325.

[7]

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

[8]

Han, G. K.; Li, L. F.; Li, X. D.; Sun, Y. R.; Du, C. Y.; Gao, Y. Z.; Yin, G. P. Proof-of-concept fabrication of carbon structure in Cu-N-C catalysts of both high ORR activity and stability. Carbon 2021, 174, 683–692.

[9]

Zhong, W. H.; Qiu, Y.; Shen, H. J.; Wang, X. J.; Yuan, J. Y.; Jia, C. Y.; Bi, S. W.; Jiang, J. Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C2N. J. Am. Chem. Soc. 2021, 143, 4405–4413.

[10]

Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.

[11]

Sun, Y. L.; Wang, J.; Liu, Q.; Xia, M. R.; Tang, Y. F.; Gao, F. M.; Hou, Y. L.; Tse, J.; Zhao, Y. F. Itinerant ferromagnetic half metallic cobalt–iron couples: Promising bifunctional electrocatalysts for ORR and OER. J. Mater. Chem. A 2019, 7, 27175–27185.

[12]

Deng, C. F.; Su, Y.; Li, F. H.; Shen, W. F.; Chen, Z. F.; Tang, Q. Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. J. Mater. Chem. A 2020, 8, 24563–24571.

[13]

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008533.

[14]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[15]

Wang, F. T.; Xie, W. B.; Yang, L. J.; Xie, D. Q.; Lin, S. Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. J. Catal. 2021, 396, 215–223.

[16]

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

[17]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[18]

Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.

[19]

Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

[20]

Yang, N.; Li, L.; Li, J.; Ding, W.; Wei, Z. D. Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts via the triple effect: Charge, spin density and ligand effect. Chem. Sci. 2018, 9, 5795–5804.

[21]

Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.

[22]

Wang, Y.; Tang, Y. J.; Zhou, K. Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 14115–14119.

[23]

Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

[24]

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

[25]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

[26]

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

[27]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[28]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[29]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[30]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[31]

Li, Y. C.; Hu, R. M.; Chen, Z. B.; Wan, X.; Shang, J. X.; Wang, F. H.; Shui, J. L. Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: Theoretical considerations. Nano Res. 2021, 14, 611–619.

[32]

Saputro, A. G.; Kasai, H. Oxygen reduction reaction on neighboring Fe-N4 and quaternary-N sites of pyrolized Fe/N/C catalyst. Phys. Chem. Chem. Phys. 2015, 17, 3059–3071.

[33]

Orellana, W. Catalytic properties of transition metal-N4 moieties in graphene for the oxygen reduction reaction: Evidence of spin-dependent mechanisms. J. Phys. Chem. C 2013, 117, 9812–9818.

[34]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[35]
NIST Chemistry WebBook: NIST Standard Reference Database Number 69 [Online].https://doi.org/10.18434/T4D303 (accessed Jun 16, 2022).
[36]

Meng, Y. N.; Yin, C.; Li, K.; Tang, H.; Wang, Y.; Wu, Z. J. Improved oxygen reduction activity in heteronuclear FeCo-codoped graphene: A theoretical study. ACS Sustainable Chem. Eng. 2019, 7, 17273–17281.

[37]

Calle-Vallejo, F.; Martínez, J. I.; García-Lastra, J. M.; Abad, E.; Koper, M. T. M. Oxygen reduction and evolution at single-metal active sites: Comparison between functionalized graphitic materials and protoporphyrins. Surf. Sci. 2013, 607, 47–53.

[38]

Zhou, Y. N.; Gao, G. P.; Chu, W.; Wang, L. W. Computational screening of transition metal-doped phthalocyanine monolayers for oxygen evolution and reduction. Nanoscale Adv. 2020, 2, 710–716.

[39]

Dutta, S.; Pati, S. K. Anchoring boron on a covalent organic framework as an efficient single atom metal-free photo-electrocatalyst for nitrogen fixation: A first-principles analysis. Phys. Chem. Chem. Phys. 2022, 24, 10765–10774.

[40]

Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.

[41]

Calle-Vallejo, F.; Martínez, J. I.; García-Lastra, J. M.; Rossmeisl, J.; Koper, M. T. M. Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. Phys. Rev. Lett. 2012, 108, 116103.

[42]

Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T. R.; Moses, P. G.; Skúlason, E.; Bligaard, T.; Nørskov, J. K. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 2007, 99, 016105.

[43]

Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 2011, 660, 254–260.

[44]

Calle-Vallejo, F.; Loffreda, D.; Koper, M. T. M.; Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 2015, 7, 403–410.

[45]
Sabatier, P. La Catalyse en Chimie Organique; Librairie Polytechnique: Paris et Liège, 1920.
[46]

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

[47]

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

[48]

Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 2020, 41, 1931–1940.

[49]

Dronskowski, R.; Bloechl, P. E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617–8624.

[50]

Kokalj, A. On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chem. Phys. 2012, 393, 1–12.

[51]

Zhao, Z. H.; Li, M. T.; Zhang, L. P.; Dai, L. M.; Xia, Z. H. Design Principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries. Adv. Mater. 2015, 27, 6834–6840.

File
12274_2022_4982_MOESM1_ESM.pdf (8.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2022
Revised: 17 August 2022
Accepted: 29 August 2022
Published: 29 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Nos. 61701288 and 51706128), the basic research plan of natural science in Shaanxi province (No. 2021JM-485), and the key scientific research project of Shaanxi provincial education department (No. 20JS019).

Return