Journal Home > Volume 16 , Issue 6

Fabricating three-dimensional (3D) composite lithium anodes via thermal infusion effectively addresses uncontrollable Li deposition and large volume changes. However, potential risks due to the long wetting time and high melting point remain a critical yet unconsidered issue. Herein, we report a stable 3D composite Li anode by infusing molten Li into a 3D scaffold within 3 s at 220 °C. The key-enabling technique is the growth of a lithiophilic Mg-Al double oxide (LDO) nanosheet array layer on the scaffold. The in-situ formed lithiophilic alloy, combined with the capillary forces from the nanosheet arrays, enabled the transient infiltration of molten Li. In addition, the formed high ionic-conductivity Li phase can help construct a robust solid electrolyte interphase (SEI), stabilize the Li anode/electrolyte interface, and guide uniform Li deposition. The 3D composite anode exhibited a long cycling life of 1,000 h under a current density of 1 mA·cm−2 and over 1,600 h under a current density of 2 mA·cm−2 with a high areal capacity of 4 mAh·cm−2 in Li/Li symmetric cells. The 3D composite anodes paired with high areal capacity LiFePO4 (LFP) and S cathodes demonstrate its practical application feasibility.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Lithiophilic interface guided transient infiltration of molten lithium for stable 3D composite lithium anodes

Show Author's information Lan-Xing Li§Yun-Nuo Li§Fei-Fei Cao( )Huan Ye( )
College of Science, Huazhong Agricultural University, Wuhan 430070, China

§ Lan-Xing Li and Yun-Nuo Li contributed equally to this work.

Abstract

Fabricating three-dimensional (3D) composite lithium anodes via thermal infusion effectively addresses uncontrollable Li deposition and large volume changes. However, potential risks due to the long wetting time and high melting point remain a critical yet unconsidered issue. Herein, we report a stable 3D composite Li anode by infusing molten Li into a 3D scaffold within 3 s at 220 °C. The key-enabling technique is the growth of a lithiophilic Mg-Al double oxide (LDO) nanosheet array layer on the scaffold. The in-situ formed lithiophilic alloy, combined with the capillary forces from the nanosheet arrays, enabled the transient infiltration of molten Li. In addition, the formed high ionic-conductivity Li phase can help construct a robust solid electrolyte interphase (SEI), stabilize the Li anode/electrolyte interface, and guide uniform Li deposition. The 3D composite anode exhibited a long cycling life of 1,000 h under a current density of 1 mA·cm−2 and over 1,600 h under a current density of 2 mA·cm−2 with a high areal capacity of 4 mAh·cm−2 in Li/Li symmetric cells. The 3D composite anodes paired with high areal capacity LiFePO4 (LFP) and S cathodes demonstrate its practical application feasibility.

Keywords: interfacial layer, lithium metal battery, composite Li anode, thermal infusion, long cycling life

References(48)

[1]

Niu, C. J.; Liu, D. Y.; Lochala, J. A.; Anderson, C. S.; Cao, X.; Gross, M. E.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 2021, 6, 723–732.

[2]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[3]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[4]

Duan, J.; Tang, X.; Dai, H. F.; Yang, Y.; Wu, W. Y.; Wei, X. Z.; Huang, Y. H. Building safe lithium-ion batteries for electric vehicles: A review. Electrochem. Energy Rev. 2020, 3, 1–42.

[5]

Li, Y. N.; Wang, C. Y.; Gao, R. M.; Cao, F. F.; Ye, H. Recent smart lithium anode configurations for high-energy lithium metal batteries. Energy Storage Mater. 2021, 38, 262–275.

[6]

Zhang, H.; Li, C. M.; Eshetu, G. G.; Laruelle, S.; Grugeon, S.; Zaghib, K.; Julien, C.; Mauger, A.; Guyomard, D.; Rojo, T. et al. From solid-solution electrodes and the rocking-chair concept to today’s batteries. Angew. Chem., Int. Ed. 2020, 59, 534–538.

[7]

Liang, Y. H.; Liu, H.; Wang, G. X.; Wang, C.; Ni, Y.; Nan, C. W.; Fan, L. Z. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. InfoMat 2022, 4, e12292.

[8]

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

[9]

Li, S. Q.; Wang, K.; Zhang, G. F.; Li, S. N.; Xu, Y. A.; Zhang, X. D.; Zhang, X.; Zheng, S. H.; Sun, X. Z.; Ma, Y. W. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater. 2022, 32, 2200796.

[10]

Zhao, C. D.; Guo, J. Z.; Gu, Z. Y.; Wang, X. T.; Zhao, X. X.; Li, W. H.; Yu, H. Y.; Wu, X. L. Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res. 2022, 15, 2200796.

[11]

Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ. Sci. 2021, 14, 1835–1853.

[12]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[13]
Sun, J. P.; Zhang, K.; Fu, Y. Z.; Guo, W. Benzoselenol as an organic electrolyte additive in Li-S battery. Nano Res., in press, https://doi.org/10.1007/s12274-022-4361-z.
DOI
[14]

Wu, D. X.; He, J.; Liu, J. D.; Wu, M. G.; Qi, S. H.; Wang, H. P.; Huang, J. D.; Li, F.; Tang, D. L.; Ma, J. M. Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 2022, 12, 2200337.

[15]

Zhao, F. F.; Zhai, P. B.; Wei, Y.; Yang, Z. L.; Chen, Q.; Zuo, J. H.; Gu, X. K.; Gong, Y. J. Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes. Adv. Sci. 2022, 9, 2103930.

[16]

Chen, C.; Liang, Q. W.; Wang, G.; Liu, D. D.; Xiong, X. H. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 2021, 32, 2107249.

[17]

Dong, Q. Y.; Hong, B.; Fan, H. L.; Gao, C. H.; Huang, X. J.; Bai, M. H.; Zhou, Y. E.; Lai, Y. Q. A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode. Energy Storage Mater. 2022, 45, 1220–1228.

[18]

Qin, J. Q.; Shi, H. D.; Huang, K.; Lu, P. F.; Wen, P. C.; Xing, F. F.; Yang, B.; Ye, M.; Yu, Y.; Wu, Z. S. Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nat. Commun. 2021, 12, 5786.

[19]

Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; Xie, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C. J.; Hu, L. B. 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 2018, 8, 1800635.

[20]

Yu, C.; Du, Y.; He, R. H.; Ma, Y.; Liu, Z. H.; Li, X. Y.; Luo, W.; Zhou, L.; Mai, L. Q. Hollow SiOx/C microspheres with semigraphitic carbon coating as the “lithium host” for dendrite-free lithium metal anodes. ACS Appl. Energy Mater. 2021, 4, 3905–3912.

[21]

Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

[22]

Feng, Y. Q.; Zheng, Z. J.; Wang, C. Y.; Yin, Y. X.; Ye, H.; Cao, F. F.; Guo, Y. G. A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes. Nano Energy 2020, 73, 104731.

[23]

Boyjoo, Y.; Shi, H. D.; Tian, Q.; Liu, S. M.; Liang, J.; Wu, Z. S.; Jaroniec, M.; Liu, J. Engineering nanoreactors for metal-chalcogen batteries. Energy Environ. Sci. 2021, 14, 540–575.

[24]

Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

[25]

Kim, M. S.; Ryu, J. H.; Deepika; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Cho, W. I. Langmuir-blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 2018, 3, 889–898.

[26]

Wen, P. C.; Lu, P. F.; Shi, X. Y.; Yao, Y.; Shi, H. D.; Liu, H. Q.; Yu, Y.; Wu, Z. S. Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high-energy-density solid-state sodium metal batteries. Adv. Energy Mater. 2021, 11, 2002930.

[27]

Lai, X. J.; Xu, Z. M.; Yang, X. F.; Ke, Q. J.; Xu, Q. S.; Wang, Z. S.; Lu, Y. Y.; Qiu, Y. C. Long cycle life and high-rate sodium metal batteries enabled by regulating 3D frameworks with artificial solid-state interphases. Adv. Energy Mater. 2022, 12, 2103540.

[28]

Qiu, G. R.; Shi, Y. P.; Huang, B. L. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Res. 2022, 15, 5153–5160.

[29]

Yao, Y.; Wei, Z. Y.; Wang, H. Y.; Huang, H. J.; Jiang, Y.; Wu, X. J.; Yao, X. Y.; Wu, Z. S.; Yu, Y. Toward high energy density all solid-state sodium batteries with excellent flexibility. Adv. Energy Mater. 2020, 10, 1903698.

[30]

Chen, Z. G.; Chen, W. M.; Wang, H. X.; Zhang, C.; Qi, X. Q.; Qie, L.; Wu, F. S.; Wang, L.; Yu, F. Q. Lithiophilic anchor points enabling endogenous symbiotic Li3N interface for homogeneous and stable lithium electrodeposition. Nano Energy 2022, 93, 106836.

[31]

Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

[32]

Zhang, R.; Wen, S. W.; Wang, N.; Qin, K. Q.; Liu, E. Z.; Shi, C. S.; Zhao, N. Q. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv. Energy Mater. 2018, 8, 1800914.

[33]

Wang, C. Y.; Yang, C. P.; Zheng, Z. J. Toward practical high-energy and high-power lithium battery anodes: Present and future. Adv. Sci. 2022, 9, 2105213.

[34]

Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci. 2020, 7, 2002212.

[35]

Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Zhang, Z. Q.; Wu, X. J.; Yang, X. Q.; Zhou, Y. N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 335–344.

[36]

Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565–571.

[37]

Zhu, Y. Y.; Zhang, Y.; Das, P.; Wu, Z. S. Recent advances in interface engineering and architecture design of air-stable and water-resistant lithium metal anodes. Energy Fuels 2021, 35, 12902–12920.

[38]

Yang, C. P.; Xie, H.; Ping, W. W.; Fu, K.; Liu, B. Y.; Rao, J. C.; Dai, J. Q.; Wang, C. W.; Pastel, G.; Hu, L. B. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 2019, 31, 1804815.

[39]

Gasior, W.; Moser, Z.; Zakulski, W.; Schwitzgebel, G. Thermodynamic studies and the phase diagram of the Li-Mg system. Metall. Mater. Trans. A 1996, 27, 2419–2428.

[40]

Krauskopf, T.; Mogwitz, B.; Rosenbach, C.; Zeier, W. G.; Janek, J. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 2019, 9, 1902568.

[41]

Zhang, H. Y.; Ju, S. L.; Xia, G. L.; Yu, X. B. Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv. 2022, 8, eabl8245.

[42]

Chowdari, B. V. R.; Rao, G. V. S.; Lee, G. Y. H. XPS and ionic conductivity studies on Li2O-Al2O3-(TiO2 or GeO2)-P2O5 glass-ceramics. Solid State Ionics 2000, 136–137, 1067–1075.

[43]

Yao, K. P. C.; Kwabi, D. G.; Quinlan, R. A.; Mansour, A. N.; Grimaud, A.; Lee, Y. L.; Lu, Y. C.; Shao-Horn, Y. Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies. J. Electrochem. Soc. 2013, 160, A824–A831.

[44]

Wu, M. J.; Jiang, F.; Jiang, J. Y. Study on oxidation behavior of Al-Mg-Sc alloy. Mater. Lett. 2022, 313, 131723.

[45]

Rosenberger, L.; Baird, R.; McCullen, E.; Auner, G.; Shreve, G. XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surf. Interface Anal. 2008, 40, 1254–1261.

[46]

Guo, R.; Gallant, B. M. Li2O solid electrolyte interphase: Probing transport properties at the chemical potential of lithium. Chem. Mater. 2020, 32, 5525–5533.

[47]

Kondo, T.; Ito, K.; Ohama, A.; Aoki, M.; Noguchi, H.; Kubo, Y. In situ grazing incidence surface X-ray diffraction study of Li2O ultra-thin film formation on Li and its effect of suppressing dendrite formation during charging and discharging. Chem. Lett. 2022, 51, 552–555.

[48]

Xu, Y. L.; Dong, K.; Jie, Y. L.; Adelhelm, P.; Chen, Y. W.; Xu, L.; Yu, P. P.; Kim, J.; Kochovski, Z.; Yu, Z. L. et al. Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: Recent progress, limitations, and future perspectives. Adv. Energy Mater. 2022, 12, 2200398.

Video
12274_2022_4981_MOESM1_ESM.mp4
File
4981_ESM.pdf (946 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 June 2022
Revised: 25 August 2022
Accepted: 29 August 2022
Published: 11 October 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21975091, 21805105, and 21773078), the Natural Science Foundation of Hubei Province (No. 2019CFA046), and the Fundamental Research Funds for the Central Universities of China (No. 2662021JC004). This work is also thanks to Siyuan Zeng, Lotus Zhang, and Carol Wang for their support of this work.

Return