Journal Home > Volume 16 , Issue 2

Nitrogen chemisorption is a prerequisite for efficient ammonia synthesis under ambient conditions, but promoting this process remains a significant challenge. Here, by loading yttrium clusters onto a single-atom support, an electronic promoting effect is triggered to successfully eliminate the nitrogen chemisorption barrier and achieve highly efficient ammonia synthesis. Density functional theory calculations reveal that yttrium clusters with abundant electron orbitals can provide considerable electrons and greatly promote electron backdonation to the N2 antibonding orbitals, making the chemisorption process exothermic. Moreover, according to the “hot atom” mechanism, the energy released during exothermic N2 chemisorption would benefit subsequent N2 cleavage and hydrogenation, thereby dramatically reducing the energy barrier of the overall process. As expected, the proof-of-concept catalyst achieves a prominent NH3 yield rate of 48.1 μg·h−1·mg−1 at −0.2 V versus the reversible hydrogen electrode, with a Faradaic efficiency of up to 69.7%. This strategy overcomes one of the most serious obstacles for electrochemical ammonia synthesis, and provides a promising method for the development of catalysts with high catalytic activity and selectivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Eliminating nitrogen chemisorption barrier with single-atom supported yttrium cluster via electronic promoting effect for highly efficient ammonia synthesis

Show Author's information Yuzhuo Jiang1,§Mengfan Wang2,§Sisi Liu2Lifang Zhang1( )Siyi Qian1Yufeng Cao1Yu Cheng1Tao Qian1,3( )Chenglin Yan2,3( )
School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
Light Industry Institute of Electrochemical Power Sources, Suzhou 215600, China

§ Yuzhuo Jiang and Mengfan Wang contributed equally to this work.

Abstract

Nitrogen chemisorption is a prerequisite for efficient ammonia synthesis under ambient conditions, but promoting this process remains a significant challenge. Here, by loading yttrium clusters onto a single-atom support, an electronic promoting effect is triggered to successfully eliminate the nitrogen chemisorption barrier and achieve highly efficient ammonia synthesis. Density functional theory calculations reveal that yttrium clusters with abundant electron orbitals can provide considerable electrons and greatly promote electron backdonation to the N2 antibonding orbitals, making the chemisorption process exothermic. Moreover, according to the “hot atom” mechanism, the energy released during exothermic N2 chemisorption would benefit subsequent N2 cleavage and hydrogenation, thereby dramatically reducing the energy barrier of the overall process. As expected, the proof-of-concept catalyst achieves a prominent NH3 yield rate of 48.1 μg·h−1·mg−1 at −0.2 V versus the reversible hydrogen electrode, with a Faradaic efficiency of up to 69.7%. This strategy overcomes one of the most serious obstacles for electrochemical ammonia synthesis, and provides a promising method for the development of catalysts with high catalytic activity and selectivity.

Keywords: ammonia synthesis, rate-determining step, yttrium cluster, electronic promoting effect, nitrogen chemisorption barrier

References(51)

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 146.

[2]

Wang, M. F.; Liu, S. S.; Ji, H. Q.; Yang, T. Z.; Qian, T.; Yan, C. L. Salting-out effect promoting highly efficient ambient ammonia synthesis. Nat. Commun. 2021, 12, 3198.

[3]

Chang, B.; Li, L. L.; Shi, D.; Jiang, H. H.; Ai, Z. Z.; Wang, S. Z.; Shao, Y. L.; Shen, J. X.; Wu, Y. Z.; Li, Y L. et al. Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl. Catal. B Environ. 2021, 283, 119622.

[4]

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

[5]

Légará, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.

[6]

Chen, X. Y.; Ma, C. Q.; Tan, Z. X.; Wang, X.; Qian, X.; Zhang, X. L.; Tian, J.; Yan, S. H.; Shao, M. H. One-dimensional screw-like MoS2 with oxygen partially replacing sulfur as an electrocatalyst for the N2 reduction reaction. Chem. Eng. J. 2022, 433, 134504.

[7]

Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan, C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

[8]

Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.

[9]

Qu, Y. B.; Dai, T. Y.; Cui, Y. H.; Zhang, Y. Z.; Wang, Z. L.; Jiang, Q. Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia. Chem. Eng. J. 2022, 433, 133752.

[10]

Wan, Y. C.; Zhou, H. J.; Zheng, M. Y.; Huang, Z. H.; Kang, F. Y.; Li, J.; Lv, R. T. Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv. Funct. Mater. 2021, 31, 2100300.

[11]

Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 130, 10403–10407.

[12]

Kong, Y.; Li, Y.; Sang, X. H.; Yang, B.; Li, Z. J.; Zheng, S. X.; Zhang, Q. H.; Yao, S. Y.; Yang, X. X.; Lei, L. C. et al. Atomically dispersed zinc(I) active sites to accelerate nitrogen reduction kinetics for ammonia electrosynthesis. Adv. Mater. 2022, 34, 2103548.

[13]

Liu, W.; Han, L. L.; Wang, H. T.; Zhao, X. R.; Boscoboinik, J. A.; Liu, X. J.; Pao, C. W.; Sun, J. Q.; Zhuo, L. C.; Luo, J. et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.

[14]

Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.

[15]

Jiang, Y. Z.; Wang, M. F.; Zhang, L. F.; Liu, S. S.; Cao, Y. F.; Qian, S. Y.; Cheng, Y.; Xu, X. N.; Yan, C. L.; Qian, T. Distorted spinel ferrite heterostructure triggered by alkaline earth metal substitution facilitates nitrogen localization and electrocatalytic reduction to ammonia. Chem. Eng. J. 2022, 450, 138226.

[16]

Liu, S. S.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Yan, C. L.; Qian, T. Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. Natl. Sci. Rev. 2021, 8, nwaa136.

[17]

Chen, Y. Z.; Sun, H. L.; Gates, B. C. Prototype atomically dispersed supported metal catalysts: Iridium and platinum. Small 2021, 17, 2004665.

[18]

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

[19]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[20]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[21]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Power Mater. 2022, 1, 100013.

[22]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[23]

Zhang, S.; Saji, S. E.; Yin, Z. Y.; Zhang, H. B.; Du, Y. P.; Yan, C. H. Rare-earth incorporated alloy catalysts: Synthesis, properties, and applications. Adv. Mater. 2021, 33, 2005988.

[24]

Zheng, X. J.; Cao, X. C.; Zeng, K.; Yan, J.; Sun, Z. H.; Rümmeli, M. H.; Yang, R. Z. A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries. Small 2021, 17, 2006183.

[25]

Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

[26]

Wang, X. N.; Zhao, L. M.; Li, X. J.; Liu, Y.; Wang, Y. S.; Yao, Q. F.; Xie, J. P.; Xue, Q. Z.; Yan, Z. F.; Yuan, X. et al. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 2022, 13, 1596.

[27]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[28]

Gong, Y. T.; Wu, J. Z.; Kitano, M.; Wang, J. J.; Ye, T. N.; Li, J.; Kobayashi, Y.; Kishida, K.; Abe, H.; Niwa, Y. et al. Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nat. Catal. 2018, 1, 178–185.

[29]

Wang, J. J.; Zhang, L. T.; Zeng, Q. F.; Vignoles, G. L.; Cheng, L. F.; Guette, A. Adsorption of atomic and molecular oxygen on 3C-SiC (111) and ( 1¯1¯1¯) surfaces: A first-principles study. Phys. Rev. B 2009, 79, 125304.

[30]

Liu, P. Y.; Shi, K.; Chen, W. Z.; Gao, R.; Liu, Z. L.; Hao, H. G.; Wang, Y. Q. Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-Based sulfides FeNi2S4/NiS hetero-interface. Appl. Catal. B Environ. 2021, 287, 119956.

[31]

Wang, M. F.; Liu, S. S.; Ji, H. Q.; Liu, J.; Yan, C. L.; Qian, T. Unveiling the essential nature of Lewis basicity in thermodynamically and dynamically promoted nitrogen fixation. Adv. Funct. Mater. 2020, 30, 2001244.

[32]

Fei, H.; Guo, T.; Xin, Y.; Wang, L. B.; Liu, R. Q.; Wang, D. Z.; Liu, F. Y.; Wu, Z. Z. Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3. Appl. Catal. B Environ. 2022, 300, 120733.

[33]

Chen, D. C.; Luo, M.; Ning, S. C.; Lan, J.; Peng, W.; Lu, Y. R.; Chan, T. S.; Tan, Y. W. Single-atom gold isolated onto nanoporous MoSe2 for boosting electrochemical nitrogen reduction. Small 2022, 18, 2104043.

[34]

Lu, X. Y.; Wang, Y. T.; Huang, J. F.; Han, N.; Li, H.; Yang, Z.; Peng, Y.; Zhang, X.; Xu, C. L. Boosting the electrochemical nitrogen reduction by rhenium-doping modulated TiO2 nanofibers. Chem. Eng. J. 2022, 434, 134648.

[35]

Liu, S. S.; Wang, M. F.; Qian, T.; Ji, H. Q.; Liu, J.; Yan, C. L. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.

[36]

Wan, Y. C.; Wang, Z. J.; Li, J.; Lv, R. T. Mo2C-MoO2 heterostructure quantum dots for enhanced electrocatalytic nitrogen reduction to ammonia. ACS Nano 2021, 16, 643–654.

[37]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[38]

Yao, W. T.; Yu, L.; Yao, P. F.; Wei, K.; Han, S. L.; Chen, P.; Xie, J. S. Bulk production of nonprecious metal catalysts from cheap starch as precursor and their excellent electrochemical activity. ACS Sustainable Chem. Eng. 2016, 4, 3235–3244.

[39]

Wang, X. W.; Wu, D.; Liu, S. Y.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Folic acid self-assembly enabling manganese single-atom electrocatalyst for selective nitrogen reduction to ammonia. Nano-Micro Lett. 2021, 13, 125.

[40]

Lv, X. W.; Liu, X. L.; Suo, Y. J.; Liu, Y. P.; Yuan, Z. Y. Identifying the dominant role of pyridinic-N–Mo bonding in synergistic electrocatalysis for ambient nitrogen reduction. ACS Nano 2021, 15, 12109–12118.

[41]

Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

[42]

Tian, Y.; Chang, B.; Wang, G. H.; Li, L. L.; Gong, L. G.; Wang, B.; Yuan, R. S.; Zhou, W. J. Magnetron sputtering tuned “π back-donation” sites over metal oxides for enhanced electrocatalytic nitrogen reduction. J. Mater. Chem. A 2022, 10, 2800–2806.

[43]

Li, Q. Q.; Shen, P.; Tian, Y.; Li, X. C.; Chu, K. Metal-free BN quantum dots/graphitic C3N4 heterostructure for nitrogen reduction reaction. J. Colloid Interface Sci. 2022, 606, 204–212.

[44]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[45]

Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

[46]

Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.

[47]

Shen, X. W.; Liu, S. S.; Xia, X. Y.; Wang, M. F.; Ji, H. Q.; Wang, Z. K.; Liu, J.; Zhang, X. S.; Yan, C. L.; Qian, T. Interfacial microextraction boosting nitrogen feed for efficient ambient ammonia synthesis in aqueous electrolyte. Adv. Funct. Mater. 2022, 32, 2109422.

[48]

Luo, Y. J.; Li, Q. Q.; Tian, Y.; Liu, Y. P.; Chu, K. Amorphization engineered VSe2−x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction. J. Mater. Chem. A 2022, 10, 1742–1749.

[49]

Wu, T. W.; Zhao, H. T.; Zhu, X. J.; Xing, Z.; Liu, T.; Gao, S. Y.; Lu, S. Y.; Chen, G.; Asiri, A. M.; Zhang, Y. N. et al. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv. Mater. 2020, 32, 2000299.

[50]

Fu, Y.; Li, T. H.; Zhou, G.; Guo, J. H.; Ao, Y. H.; Hu, Y. Y.; Shen, J. C.; Liu, L. Z.; Wu, X. L. Dual-metal-driven selective pathway of nitrogen reduction in orderly atomic-hybridized Re2MnS6 ultrathin nanosheets. Nano Lett. 2020, 20, 4960–4967.

[51]

Liu, H. H.; Cao, X. R.; Ding, L.-X.; Wang, H. H. Sn-doped black phosphorene for enhancing the selectivity of nitrogen electroreduction to ammonia. Adv. Funct. Mater. 2022, 32, 2111161.

File
12274_2022_4977_MOESM1_ESM.pdf (10.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 July 2022
Revised: 26 August 2022
Accepted: 27 August 2022
Published: 01 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U21A20332, 52103226, and 52071226), the Outstanding Youth Foundation of Jiangsu Province (No. BK20220061), the Natural Science Foundation of Jiangsu Province (No. BK20201171), the Key Research and Development Plan of Jiangsu Province (No. BE2020003-3), and the Fellowship of China Postdoctoral Science Foundation (No. 2021M702382).

Return