Journal Home > Volume 16 , Issue 2

Metal-free catalyst for photocatalytic production of H2O2 is highly desirable with the long-term vision of artificial photosynthesis of solar fuel. In particular, the specific chemical bonds for selective H2O2 photosynthesis via 2e oxygen reduction reactions (ORR) remain to be explored for understanding the forming mechanism of active sites. Herein, we report a facile doping method to introduce boron-nitrogen (B–N) bonds into the structure of graphitic carbon nitride (g-C3N4) nanosheets (denoted as BCNNS) to provide significant photocatalytic activity, selectivity and stability. The theoretical calculation and experimental results reveal that the electron-deficient B–N units serving as electron acceptors improve photogenerated charge separation and transfer. The units are also proved to be superior active sites for selective O2 adsorption and activation, reducing the energy barrier for *OOH formation, and thereby enabling an efficient 2e ORR pathway to H2O2. Consequently, with only bare loss of activity during repeated cycles, the optimal H2O2 production rate by BCNNS photocatalysts reaches 1.16 mmol·L–1·h–1 under 365 nm-monochrome light emitting diode (LED365nm) irradiation, increasing nearly 2–5 times as against the state-of-art metal-free photocatalysts. This work gives the first example of applying B–N bonds to enhance the photocatalytic H2O2 production as well as unveiling the underlying reaction pathway for efficient solar-energy transformations.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Introducing B–N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets

Show Author's information Weikang Wang1,2,§Wei Zhang3,§Yueji Cai1Qing Wang1Juan Deng1Jingsheng Chen1Zhifeng Jiang3Yizhou Zhang4( )Chao Yu1( )
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
School of Chemistry and Materials Science Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China

§ Weikang Wang and Wei Zhang contributed equally to this work.

Abstract

Metal-free catalyst for photocatalytic production of H2O2 is highly desirable with the long-term vision of artificial photosynthesis of solar fuel. In particular, the specific chemical bonds for selective H2O2 photosynthesis via 2e oxygen reduction reactions (ORR) remain to be explored for understanding the forming mechanism of active sites. Herein, we report a facile doping method to introduce boron-nitrogen (B–N) bonds into the structure of graphitic carbon nitride (g-C3N4) nanosheets (denoted as BCNNS) to provide significant photocatalytic activity, selectivity and stability. The theoretical calculation and experimental results reveal that the electron-deficient B–N units serving as electron acceptors improve photogenerated charge separation and transfer. The units are also proved to be superior active sites for selective O2 adsorption and activation, reducing the energy barrier for *OOH formation, and thereby enabling an efficient 2e ORR pathway to H2O2. Consequently, with only bare loss of activity during repeated cycles, the optimal H2O2 production rate by BCNNS photocatalysts reaches 1.16 mmol·L–1·h–1 under 365 nm-monochrome light emitting diode (LED365nm) irradiation, increasing nearly 2–5 times as against the state-of-art metal-free photocatalysts. This work gives the first example of applying B–N bonds to enhance the photocatalytic H2O2 production as well as unveiling the underlying reaction pathway for efficient solar-energy transformations.

Keywords: oxygen reduction reaction, H2O2 production, metal-free photocatalyst, B–N bonds, graphitic carbon nitride (g-C3N4) nanosheets

References(55)

[1]

Yuan, L.; Zhang, C. Q.; Wang, J.; Liu, C.; Yu, C. Z. Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production. Nano Res. 2021, 14, 3267–3273.

[2]

Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

[3]

Chen, L.; Chen, C.; Yang, Z.; Li, S.; Chu, C. H.; Chen, B. L. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride. Adv. Funct. Mater. 2021, 31, 2105731.

[4]
Yang, Y.; Cheng, B.; Yu, J. G.; Wang, L. X.; Ho, W. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Res. , in press, DOI: 10.1007/s12274-021-3733-0.
[5]

Chen, L.; Wang, L.; Wan, Y. Y.; Zhang, Y.; Qi, Z. M.; Wu, X. J.; Xu, H. X. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway. Adv. Mater. 2020, 32, 1904433.

[6]

Huang, X.; Song, M.; Zhang, J.; Zhang, J. J.; Liu, W.; Zhang, C.; Zhang, W.; Wang, D. L. Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. Nano Res. 2022, 15, 3927–3932.

[7]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1: e9120028.

[8]

Jiang, Z. C.; Zhang, Y.; Zhang, L. Y.; Cheng, B.; Wang, L. X. Effect of calcination temperatures on photocatalytic H2O2-production activity of ZnO nanorods. Chinese J. Catal. 2022, 43, 226–233.

[9]

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

[10]

Krishnaraj, C.; Sekhar Jena, H.; Bourda, L.; Laemont, A.; Pachfule, P.; Roeser, J.; Chandran, C. V.; Borgmans, S.; Rogge, S. M. J.; Leus, K. et al. Strongly reducing (Diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J. Am. Chem. Soc. 2020, 142, 20107–20116.

[11]

Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B 2021, 289, 120035.

[12]

Shi, H. Y.; Li, Y.; Wang, X. F.; Yu, H. G.; Yu, J. G. Selective modification of ultra-thin g-C3N4 nanosheets on the (110) facet of Au/BiVO4 for boosting photocatalytic H2O2 production. Appl. Catal. B 2021, 297, 120414.

[13]

Zhao, Y. B.; Zhang, P.; Yang, Z. C.; Li, L. N.; Gao, J. Y.; Chen, S.; Xie, T. F.; Diao, C. Z.; Xi, S. B.; Xiao, B. B. et al. Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nat. Commun. 2021, 12, 3701.

[14]

Wang, L.; Lian, R.; Zhang, Y.; Ma, X. L.; Huang, J. W.; She, H. D.; Liu, C. L.; Wang, Q. Z. Rational preparation of cocoon-like g-C3N4/COF hybrids: Accelerated intramolecular charge delivery for photocatalytic hydrogen evolution. Appl. Catal. B 2022, 315, 121568.

[15]

Wu, S.; Yu, H. T.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380–14389.

[16]

Moon, G. H.; Fujitsuka, M.; Kim, S.; Majima, T.; Wang, X. C.; Choi, W. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal. 2017, 7, 2886–2895.

[17]

Wang, X. Y.; Meng, J. Q.; Zhang, X. Y.; Liu, Y. Q.; Ren, M.; Yang, Y. X.; Guo, Y. H. Controllable approach to carbon-deficient and oxygen-doped graphitic carbon nitride: Robust photocatalyst against recalcitrant organic pollutants and the mechanism insight. Adv. Funct. Mater. 2021, 31, 2010763.

[18]

Dai, Y. T.; Xiong, Y. J. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Res. Energy 2022, 1: e9120006.

[19]

Zhou, M.; Wang, S. B.; Yang, P. J.; Huang, C. J.; Wang, X. C. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928–4936.

[20]

Shi, L.; Zhou, Z. B.; Zhang, Y. H.; Ling, C Y.; Li, Q.; Wang, J. L. Photocatalytic conversion of CO to fuels with water by B-doped graphene/g-C3N4 heterostructure. Sci. Bull. 2021, 66, 1186–1193.

[21]

Wen, Y. K.; Zhuang, Z. C.; Zhu, H.; Hao, J. C.; Chu, K. B.; Lai, F. L.; Zong, W.; Wang, C.; Ma, P. M.; Dong, W. F. et al. Isolation of metalloid boron atoms in intermetallic carbide boosts the catalytic selectivity for electrocatalytic N2 fixation. Adv. Energy Mater. 2021, 11, 2102138.

[22]

Xia, Y.; Zhao, X. H.; Xia, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 2021, 12, 4225.

[23]

Pang, S. T.; Wang, Z. Q.; Yuan, X. Y.; Pan, L. H.; Deng, W. Y.; Tang, H. B.; Wu, H. B.; Chen, S. S.; Duan, C. H.; Huang, F. et al. A facile synthesized polymer featuring B-N covalent bond and small singlet-triplet gap for high-performance organic solar cells. Angew. Chem., Int. Ed. 2021, 60, 8813–8817.

[24]

Dou, C. D.; Long, X. J.; Ding, Z. C.; Xie, Z. Y.; Liu, J.; Wang, L. X. An electron-deficient building block based on the B←N unit: An electron acceptor for all-polymer solar cells. Angew. Chem. 2016, 128, 1458–1462.

[25]

Wang, W. K.; Zhou, H. J.; Liu, Y. Y.; Zhang, S. B.; Zhang, Y. X.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Formation of B-N-C coordination to stabilize the exposed active nitrogen atoms in g-C3N4 for dramatically enhanced photocatalytic ammonia synthesis performance. Small 2020, 16, 1906880.

[26]

Luo, Z. S.; Fang, Y. X.; Zhou, M.; Wang, X. C. A borocarbonitride ceramic aerogel for photoredox catalysis. Angew. Chem., Int. Ed. 2019, 58, 6033–6037.

[27]

Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chinese J. Catal. 2021, 42, 56–68.

[28]

Huang, C. J.; Chen, C.; Zhang, M. W.; Lin, L. H.; Ye, X. X.; Lin, S.; Antonietti, M.; Wang, X. C. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 2015, 6, 7698.

[29]

Jiang, W. J.; Ruan, Q. S.; Xie, J. J.; Chen, X. J.; Zhu, Y. F.; Tang, J. W. Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion. Appl. Catal. B 2018, 236, 428–435.

[30]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[31]

Wang, Y.; Li, H. R.; Yao, J.; Wang, X. C.; Antonietti, M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem. Sci. 2011, 2, 446–450.

[32]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

[33]

Wen, Y. K.; Zhu, H.; Hao, J. C.; Lu, S. L.; Zong, W.; Lai, F. L.; Ma, P. M.; Dong, W. F.; Liu, T. X.; Du, M. L. Metal-free boron and sulphur co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia. Appl. Catal. B 2021, 292, 120144.

[34]

Yang, Y. L.; Zhang, D. N.; Fan, J. J.; Liao, Y. L.; Xiang, Q. J. Construction of an ultrathin S-scheme heterojunction based on few-layer g-C3N4 and monolayer Ti3C2Tx MXene for photocatalytic CO2 reduction. Sol. RRL 2021, 5, 2000351.

[35]

Ding, M. L.; Jiang, H. L. Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion. ACS Catal. 2018, 8, 3194–3201.

[36]

Ran, Y.; Yu, X. L.; Liu, J. Q.; Cui, J. Y.; Wang, J. P.; Wang, L.; Zhang, Y. H.; Xiang, X.; Ye, J. H. Polymeric carbon nitride with frustrated Lewis pair sites for enhanced photofixation of nitrogen. J. Mater. Chem. A 2020, 8, 13292–13298.

[37]

Zhao, J.; Lin, B. N.; Zhu, Y. F.; Zhou, Y. H.; Liu, H. Y. Phosphor-doped hexagonal boron nitride nanosheets as effective acid-base bifunctional catalysts for one-pot deacetalization-Knoevenagel cascade reactions. Catal. Sci. Technol. 2018, 8, 5900–5905.

[38]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[39]

Liu, Z. K.; Yan, B.; Meng, S. Y.; Liu, R.; Lu, W. D.; Sheng, J.; Yi, Y. H.; Lu, A. H. Plasma tuning local environment of hexagonal boron nitride for oxidative dehydrogenation of propane. Angew. Chem., Int. Ed. 2021, 60, 19691–19695.

[40]

Zhao, L. Y.; Dong, X. L.; Chen, J. Y.; Lu, A. H. A mechanochemical-assisted synthesis of boron, nitrogen Co-doped porous carbons as metal-free catalysts. Chem. Eur. J. 2020, 26, 2041–2050.

[41]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[42]

Yang, Q. H.; Xu, W. W.; Gong, S.; Zheng, G. K.; Tian, Z. Q.; Wen, Y. J.; Peng, L. M.; Zhang, L. J.; Lu, Z. Y.; Chen, L. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nat. Commun. 2020, 11, 5478.

[43]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[44]

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

[45]
Sun, X. H.; Sun, L.; Li, G. N.; Tuo, Y.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem. , Int. Ed. , in press, DOI: 10.1002/anie.202207677.
[46]

Chen, Y. L.; Liu, X. Q.; Hou, L.; Guo, X. R.; Fu, R. W.; Sun, J. M. Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem. Eng. J. 2020, 383, 123132.

[47]

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

[48]

Wang, W. K.; Zhang, H. M.; Zhang, S. B.; Liu, Y. Y.; Wang, G. Z.; Sun, C. H.; Zhao, H. J. Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible-light-driven photocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 16644–16650.

[49]

Sayed, M.; Xu, F. Y.; Kuang, P. Y.; Low, J.; Wang, S. Y.; Zhang, L. Y.; Yu, J. G. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nat. Commun. 2021, 12, 4936.

[50]

Zhao, Y. J.; Liu, Y.; Cao, J. J.; Wang, H.; Shao, M. W.; Huang, H.; Liu, Y.; Kang, Z. H. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Appl. Catal. B 2020, 278, 119289.

[51]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[52]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[53]

Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

[54]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1: e9120027.

[55]

Zhang, P.; Tong, Y. W.; Liu, Y.; Vequizo, J. J. M.; Sun, H. W.; Yang, C.; Yamakata, A.; Fan, F. T.; Lin, W.; Wang, X. C. et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew. Chem., Int. Ed. 2020, 59, 16209–16217.

File
12274_2022_4976_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2022
Revised: 26 August 2022
Accepted: 27 August 2022
Published: 21 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Jiangsu Provincial Double-Innovation Doctor Program (JSSCBS20210996).

Return